the mixture was filtered. The filtrate was cooled to 0 °C, and 10% Pd/C was added. The mixture was then shaken under H_2 (40 psi) for 3 h at rt. Filtration of the mixture and concentration of the filtrate gave the pure amino amide 20 (0.085 g, 98%): mp 202 °C dec; $[\alpha]^{20}$ –20.4° (c 1, H₂O); ¹H NMR (D₂O, int. std. 4.78 ppm) & 0.92, 0.93 (2d, 6 H), 1.35-1.45 (m, 1 H), 1.52-1.64 (m, 1 H), 1.68-1.80 (m, 1 H), 2.50 (AB, J = 10.50 Hz, 1 H), 2.53 (AB, J = 3.5, 10.7 Hz, 1 H), 3.4 (ddd, J = 3.06, 7.14, 9.8 Hz, 1 H), 4.0-4.10 (m, 1 H); ¹³C NMR (D₂O, CH₃OH int. std. 48.98 ppm) δ 21.01, 22.10, 23.93, 38.50, 41.42, 53.97, 68.27, 178.72. Anal. Calcd for C₈H₁₈N₂O₂·H₂O: C, 49.98; H, 10.49; N, 14.57. Found: C, 49.83; H, 10.49; N, 14.37.

(3R,4S)-4-Amino-3-hydroxy-6-methylheptanamide (21). Similar treatment of 17 (0.1 g, 0.5 mmol) gave 21 (0.083 g, 96%): mp 203 °C dec; $[\alpha]^{20}_{D}$ -18.1° (c 1, H₂O).

(3R,4R)-4-Amino-3-hydroxy-6-methylheptanamide (22). Treatment of 18 (0.1 g, 0.5 mmol) in a similar manner gave 22 (0.080 g, 92%): $[\alpha]^{20}_{D} + 19^{\circ}$ (c 1, H₂O).

(3S,4R)-4-Amino-3-hydroxy-6-methylheptanamide (23). Similar treatment of 19 (0.1 g, 0.5 mmol) gave 23 (0.086 g, 99%): $[\alpha]^{20}_{D}$ +18.3° (c 1, H₂O); ¹H NMR (D₂O int. std. 4.78 ppm) δ 0.91 (2d, 6 H), 1.35–1.70 (m, 3 H), 2.4–2.66 (m, 2 H), 3.37–3.48 (m, 1 H), 4.24–4.38 (m, 1 H); 13 C NMR (DCl 0.2 N, CH₃OH int. std. 48.95 ppm) δ 17.47, 18.33, 20.34, 34.66, 38.06, 58.01, 67.85, 175.54. Anal. Calcd for C₈H₁₈N₂O₂·0.6H₂O: C, 51.92; H, 10.46; N, 15.14. Found: C, 51.63; H, 10.42; N, 14.78.

Acknowledgment. We thank the Association pour la Recherche contre le Cancer (A.R.C.) for financial support.

Supplementary Material Available: ¹³C NMR spectra for compounds 1, 2, 5, 7, 8, 11, 12, 15, 16, 19, 20, and 23 (12 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

Asymmetric Tandem Mannich-Michael Reactions of Amino Acid Ester **Imines with Danishefsky's Diene**

H. Waldmann* and M. Braun

Universität Bonn, Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Str. 1, D-5300 Bonn, Germany

Received December 3, 1991 (Revised Manuscript Received May 14, 1992)

Imines 1 derived from aromatic, aliphatic, and functionalized aldehydes and various amino acid esters react with Danishefsky's diene under Lewis acid catalysis via a tandem Mannich-Michael mechanism to give cyclic 6-substituted 2,3-didehydro-4-piperidinones in good to high yields and with diastereomeric ratios reaching from 92:8 up to 97:3. The chiral auxiliary is removed by conversion of the α C atom of the amino acid into an acetalic center, employing a Curtius reaction as the key step. For the elucidation of the absolute configuration, the alkaloids (S)-coniine and (R)- δ -coniceine are synthesized from the enaminones 5i and 5r.

Introduction

Reactions of compounds containing C-N double bonds with dienes to give six-membered azaheterocycles open up a wide variety of opportunities for organic synthesis, in particular for the construction of alkaloids and analogues thereof.¹ The widespread use of these methods has for a long time been hampered by the low reactivity of easily accessible and common unactivated imines, making the application of activated Schiff bases necessary, which carry electron-withdrawing substituents, e.g. CF_3 , acyl, and tosyl groups. However, recently Danishefsky et al.^{2a-c} demonstrated that unactivated aromatic and aliphatic imines react smoothly with electron-rich dienes like 2 (Danishefsky's diene) in the presence of ZnCl₂. The mechanism of this conversion is a matter of debate and may vary with the structure of the heteroanalogous carbonyl compound employed. Whereas Danishefsky et al. seem to favor a

Diels-Alder type process, Kunz et al.³ have substantiated that alternatively a Lewis acid induced addition of the silvl enol ether moiety of 2 followed by a cyclization via nucleophilic intramolecular attack of the amine generated, may occur. The principle has subsequently been applied by several groups for the construction of various heterocyclic frameworks and natural products.^{2,3} Despite the great potential of this synthetic method, only isolated efforts have thus far been made to carry out corresponding transformations asymmetrically using removable chiral auxiliary groups, i.e. only a carbohydrate derived amine has been applied for the steric steering of reactions between the diene 2 and respective imines.³

In this paper we report on the use of the easily accessible amino acid esters as mediators of chirality in the reaction of unactivated imines with Danishefsky's diene 2.5 These esters have already been used as effective chiral auxiliaries

^{(1) (}a) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press: New York, 1987. (b) Boger, D. L. Chem. Rev. 1986, 86, 781. (c) Weinreb, S. M.; Staib, R. R. Tetrahedron 1982, 38, 3087. (d) Weinreb, S. M.; Levin, J. I. Heterocycles 1979, 12, 949. 1982, 36, 3087. (d) Weinren, S. M.; Levin, J. 1. Reterocycles 1919, 12, 949.
(2) (a) Kervin, J., Jr.; Danishefsky, S. Tetrahedron Lett. 1982, 23, 3739. (b) Danishefsky, S.; Langer, M.; Vogel, C. Tetrahedron Lett. 1985, 26, 5983. (c) Danishefsky, S.; Vogel, C. J. Org. Chem. 1986, 51, 3915. (d) Veyrat, C.; Wartzki, L.; Seyden-Penne, J. Tetrahedron Lett. 1986, 27, 2981. (e) Le Coz, L.; Wartzki, C.; Seyden-Penne, J.; Chapin, P.; Nierlich, M. Tetrahedron Lett. 1989, 30, 2795. (f) Brandstadter, S.; Ojima, I. Tetrahedron Lett. 1987, 28, 613. (g) Midland, M.; McLoughlin, J. Tetrahedron Lett. 1989, 20, 4652. rahedron Lett. 1988, 29, 4653.

⁽³⁾ Kunz, H.; Pfrengle, W. Angew. Chem. 1989, 101, 1041; Angew. Chem., Int. Ed. Engl. 1989, 28, 1067.

^{(4) (}a) Grieco, P. A.; Bahsas, A. J. Org. Chem. 1987, 52, 5741. (b) Grieco, P. A.; Parker, D. T.; Fobare, W. F.; Ruckle, R. J. Am. Chem. Soc. 1987, 109, 5859. (c) Grieco, P.; Larsen, S.; Fobare, W. Tetrahedron Lett. 1986, 27, 1975. (d) Waldmann, H.; Braun, M. Liebigs Ann. Chem. 1991. 1045. (e) Waldmann, H.; Braun, M. Tetrahedron: Asymmetry 1991, 2, 1231. (f) Waldmann, H. Angew. Chem. 1988, 100, 307; Angew. Chem., Int. Ed. Engl. 1988, 27, 274; Liebigs Ann. Chem. 1989, 231. (5) Preliminary communication: Waldmann, H.; Braun, M.; Dräger, M. Angew. Chem. 1990, 102, 1445; Angew. Chem., Int. Ed. Engl. 1990, 001105.

^{29, 1468.}

Mannich-Michael Reactions of Amino Acid Ester Imines

Table I.	Synthesis of	2,3-Didehydropiperidin-4-ones with	Varying Aldehydes
----------	--------------	------------------------------------	-------------------

Table 1. Synthesis of 2,0-Didenyaropiperian-tones with varying Aldenyaes								
entry	no.	\mathbb{R}^1	amino acid	temp (°C)	Lewis acid/solvent	yield (%)	5:6	
1	5a.	phenyl	Phg-OMe	0	ZnCl ₂ /THF	25	60:40	
2	5b	<i>p</i> -methoxy-Ph	Phg-OMe	-20	ZnCl ₂ /THF	63	67:33	
3	5c	<i>p</i> -nitro-Ph	Phg-OMe	0	ZnCl ₂ /THF	53	62:38	
4	5 d	n-prop	Phg-OMe	0	ZnCl ₂ /THF	69	71:29	
5	5e	phenyl	Val-OMe	-20	ZnCl ₂ /THF	45	92:8	
6	5 f	p-methoxy-Ph	Val-OMe	0	ZnCl _o /THF	54	92:8	
7	5g	p-nitro-Ph	Val-OMe	Ó	ZnCl ₂ /THF	65	94:6	
8	51	p-nitro-Ph	Ile-OMe	-10	ZnCl ₂ /THF	57	93:7	
9	5m	p-nitro-Ph	Ile-OBzl	-10	ZnCl ₂ /THF	60	93:7	
10	5 n	p-methoxy-Ph	Ile-OMe	-10	ZnCl ₂ /THF	56	91:9	
11	5 i	n-prop	Ile-OMe	0	2 equiv of ZnCl _o /THF	11	15:85	
12	50	i-prop	Ile-OMe	-78 to -20	EtAlCl _o /CH _o Cl _o	48	97:3	
13	50	i-prop	Ile-OMe	-78 to -20	Me _a AlCl/CH _a Cl _a	50	93:7	
14	50	n-bu	Ile-OMe	-78 to -20	Me ₂ AlCl/CH ₂ Cl ₂	77	90:10	
15	5α	MeOOC(CH _a) _a	Val-OBz]	-78 to -20	EtAlCl./CH.Cl.	46	93:7	
16	5 r	EtOOC(CH ₂)	Val-OBzl	-78 to -20	EtAlCl ₂ /CH ₂ Cl ₂	50	93:7	
17	E.			- 78 to -90		75	09.7	
17	08	s Xs	He-Ome	-78 to -20		10	93:1	
18	5t	n-prop	Phe-OMe	-10	$ZnCl_2/THF$	65	66:34	
	entry 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	entry no. 1 5a 2 5b 3 5c 4 5d 5 5e 6 5f 7 5g 8 51 9 5m 10 5n 11 5i 12 5o 13 5o 14 5p 15 5q 16 5r 17 5s 18 5t	entry no. \mathbb{R}^1 1 5a phenyl 2 5b p-methoxy-Ph 3 5c p-nitro-Ph 4 5d n-prop 5 5e phenyl 6 5f p-methoxy-Ph 7 5g p-nitro-Ph 8 51 p-nitro-Ph 9 5m p-nitro-Ph 10 5n p-methoxy-Ph 11 5i n-prop 12 5o i-prop 13 5o i-prop 14 5p n-bu 15 5q MeOOC(CH2)2 17 5s S 18 5t n-prop	Particle 1: Synthesis of 2,0-Didelyentryno. \mathbb{R}^1 amino acid15aphenylPhg-OMe25bp-methoxy-PhPhg-OMe35cp-nitro-PhPhg-OMe45dn-propPhg-OMe55ephenylVal-OMe65fp-methoxy-PhVal-OMe75gp-nitro-PhVal-OMe851p-nitro-PhIle-OMe95mp-nitro-PhIle-OMe105np-methoxy-PhIle-OMe115in-propIle-OMe135oi-propIle-OMe145pn-buIle-OMe155qMeOOC(CH2)2Val-OB21175s $\overbrace{S}S$ Ile-OMe185tn-propPhe-OMe	entry no. R ¹ amino acid temp (°C) 1 5a phenyl Phg-OMe 0 2 5b p-methoxy-Ph Phg-OMe -20 3 5c p-nitro-Ph Phg-OMe 0 4 5d n-prop Phg-OMe 0 5 5e phenyl Val-OMe 0 6 5f p-methoxy-Ph Val-OMe 0 7 5g p-nitro-Ph Val-OMe 0 8 5l p-nitro-Ph Val-OMe 0 9 5m p-nitro-Ph Ile-OMe -10 9 5m p-nitro-Ph Ile-OMe -10 10 5n p-methoxy-Ph Ile-OMe -10 11 5i n-prop Ile-OMe -78 to -20 13 50 <i>i</i> -prop Ile-OMe -78 to -20 14 5p n-bu Ile-OMe -78 to -20 16 5r EtOOC(CH2)2 Val-OBzl -78 to -20 17 5s St <	Table 1. Synthesis of 2,0-Dideby drop periodic + ones with varying Attenyentryno. \mathbb{R}^1 amino acidtemp (°C)Lewis acid/solvent15aphenylPhg-OMe0 $2nCl_2/THF$ 25bp-methoxy-PhPhg-OMe0 $2nCl_2/THF$ 35cp-nitro-PhPhg-OMe0 $2nCl_2/THF$ 45dn-propPhg-OMe0 $2nCl_2/THF$ 55ephenylVal-OMe-20 $2nCl_2/THF$ 65fp-methoxy-PhVal-OMe0 $2nCl_2/THF$ 75gp-nitro-PhVal-OMe0 $2nCl_2/THF$ 851p-nitro-PhIle-OMe-10 $2nCl_2/THF$ 95mp-nitro-PhIle-OMe-10 $2nCl_2/THF$ 105np-methoxy-PhIle-OMe-10 $2nCl_2/THF$ 115in-propIle-OMe02 equiv of $2nCl_2/THF$ 125oi-propIle-OMe-78 to -20EtAlCl_2/CH_2Cl_2135oi-propIle-OMe-78 to -20EtAlCl_2/CH_2Cl_2145pn-buIle-OMe-78 to -20EtAlCl_2/CH_2Cl_2155qMeOOC(CH_2)_3Val-OB2l-78 to -20EtAlCl_2/CH_2Cl_2165rEtOOC(CH_2)_2Val-OB2l-78 to -20EtAlCl_2/CH_2Cl_2175s $\sqrt{s_s}$ Ile-OMe-70 $2nCl_2/THF$ 185tn-propPhe-OMe-10 $2nCl_2/THF$ </td <td>Table 1. Synthesis of 2,0-Dideny displayed opportunity once with varying Aldeny desentryno.R1amino acidtemp (°C)Lewis acid/solventyield (%)15aphenylPhg-OMe0ZnCl₂/THF2525bp-methoxy-PhPhg-OMe0ZnCl₂/THF6335cp-nitro-PhPhg-OMe0ZnCl₂/THF6345dn-propPhg-OMe0ZnCl₂/THF6955ephenylVal-OMe-20ZnCl₂/THF4565fp-methoxy-PhVal-OMe0ZnCl₂/THF5475gp-nitro-PhVal-OMe0ZnCl₂/THF65851p-nitro-PhHe-OMe-10ZnCl₂/THF6595mp-nitro-PhIle-OMe-10ZnCl₂/THF66105np-methoxy-PhIle-OMe-78 to -20EtAlCl₂/CH₂Cl₂481350i-propIle-OMe-78 to -20EtAlCl₂/CH₂Cl₂50145pn-buIle-OMe-78 to -20EtAlCl₂/CH₂Cl₂46165rEtOOC(CH₂)₂Val-OBzl-78 to -20EtAlCl₂/CH₂Cl₂50175sIle-OMe-78 to -20EtAlCl₂/CH₂Cl₂75185tn-propPhe-OMe-10ZnCl₂/THF65</td> <td>entry no. R¹ amino acid temp (°C) Lewis acid/solvent yield (%) 5:6 1 5a phenyl Phg-OMe 0 ZnCl2/THF 25 60:40 2 5b p-methoxy-Ph Phg-OMe -20 ZnCl2/THF 63 67:33 3 5c p-nitro-Ph Phg-OMe 0 ZnCl2/THF 63 67:33 4 5d n-prop Phg-OMe 0 ZnCl2/THF 63 67:33 5 e phenyl Val-OMe 0 ZnCl2/THF 64 92:8 6 5f p-methoxy-Ph Val-OMe 0 ZnCl2/THF 54 92:8 7 5g p-nitro-Ph Val-OMe 0 ZnCl2/THF 65 94:6 8 51 p-nitro-Ph Ile-OMe -10 ZnCl2/THF 66 93:7 9 5m p-nitro-Ph Ile-OMe -10 ZnCl2/THF 66 91:9 10</td>	Table 1. Synthesis of 2,0-Dideny displayed opportunity once with varying Aldeny desentryno.R1amino acidtemp (°C)Lewis acid/solventyield (%)15aphenylPhg-OMe0ZnCl ₂ /THF2525bp-methoxy-PhPhg-OMe0ZnCl ₂ /THF6335cp-nitro-PhPhg-OMe0ZnCl ₂ /THF6345dn-propPhg-OMe0ZnCl ₂ /THF6955ephenylVal-OMe-20ZnCl ₂ /THF4565fp-methoxy-PhVal-OMe0ZnCl ₂ /THF5475gp-nitro-PhVal-OMe0ZnCl ₂ /THF65851p-nitro-PhHe-OMe-10ZnCl ₂ /THF6595mp-nitro-PhIle-OMe-10ZnCl ₂ /THF66105np-methoxy-PhIle-OMe-78 to -20EtAlCl ₂ /CH ₂ Cl ₂ 481350i-propIle-OMe-78 to -20EtAlCl ₂ /CH ₂ Cl ₂ 50145pn-buIle-OMe-78 to -20EtAlCl ₂ /CH ₂ Cl ₂ 46165rEtOOC(CH ₂) ₂ Val-OBzl-78 to -20EtAlCl ₂ /CH ₂ Cl ₂ 50175sIle-OMe-78 to -20EtAlCl ₂ /CH ₂ Cl ₂ 75185tn-propPhe-OMe-10ZnCl ₂ /THF65	entry no. R ¹ amino acid temp (°C) Lewis acid/solvent yield (%) 5:6 1 5a phenyl Phg-OMe 0 ZnCl2/THF 25 60:40 2 5b p-methoxy-Ph Phg-OMe -20 ZnCl2/THF 63 67:33 3 5c p-nitro-Ph Phg-OMe 0 ZnCl2/THF 63 67:33 4 5d n-prop Phg-OMe 0 ZnCl2/THF 63 67:33 5 e phenyl Val-OMe 0 ZnCl2/THF 64 92:8 6 5f p-methoxy-Ph Val-OMe 0 ZnCl2/THF 54 92:8 7 5g p-nitro-Ph Val-OMe 0 ZnCl2/THF 65 94:6 8 51 p-nitro-Ph Ile-OMe -10 ZnCl2/THF 66 93:7 9 5m p-nitro-Ph Ile-OMe -10 ZnCl2/THF 66 91:9 10

in asymmetric hetero-Diels-Alder reactions,⁴ carbo-Diels-Alder reactions,⁶ 1,3-dipolar cycloadditions,⁷ radical additions to carbonyl groups,⁸ and a variety of further reactions.9

Results and Discussion

The Danishefsky diene 2 reacts with amino acid ester imines 1 in the presence of 1 equiv of a Lewis acid to deliver the enaminones 5 and 6 in high yield and, depending on the structure of the amino acid used, with good to excellent stereoselectivity (Scheme I, Tables I and II). The diastereomeric ratios can be determined directly from the crude reaction mixtures by analytical HPLC. The major diastereomers 5 are conveniently isolated by flash chromatography. Their absolute configurations were determined by conversion of 5i and 5r into the naturally occurring alkaloids (S)-coniine and (R)- δ -coniceine (vide infra). In neither case could an intermediate 3 be detected, which according to Danishefsky et al.,² would result from a Diels-Alder process, neither was an intermediate 4 isolated, which according to observations of Kunz et al.,³ would result from a stepwise tandem Mannich-Michael process. However, in the synthesis of 5h/6h using $ZnCl_2$ as catalyst, the vinylogous amide 7 was formed in 26%yield as a byproduct. This compound must have been formed by nucleophilic attack of free amino acid ester, which was present in the reaction mixture probably because of incomplete formation of the imine at the Mannich base intermediate 4. To confirm this assumption and to rule out the possibility of an alternative reaction of the ester with the final enaminones 5h/6h, the free amino acid ester was treated with 5h and $ZnCl_2$ under identical conditions and finally at reflux temperature. However, formation of 7 could not be detected. From these results a definite proof of the course of the reaction cannot be obtained, but the occurrence of 7 suggests that most probably the tandem Mannich-Michael sequence is followed if amino acid ester imines are used as electrophiles.

The application of phenylglycine and phenylalanine as chiral auxiliaries resulted in only low diastereomeric ratios

(Table I, entries 1-4 and 18). In addition, the Schiff bases of phenylglycine are prone to racemization.¹⁰ This was confirmed by treating the benzaldimine of phenylglycine methyl ester with $ZnCl_2$ under the respective reaction conditions, reisolation of the amino acid ester, and comparison of its specific rotation (-40 °, c = 1.3, CH₂Cl₂) with the value obtained for a reference sample (-128° , c = 1.1, CH₂Cl₂). However, imines derived from valine and isoleucine esters yielded the enaminones with uniformly high diastereomeric excess. The size of the ester moiety remarkably seems only to be of subordinate influence on the diastereomeric ratio, as there is no significant difference between amino acid methyl and benzyl esters (Table II, entries 1 and 2). Electronic effects, too, seemingly play no important role in this process since aldehydes bearing

^{(6) (}a) Waldmann, H. J. Org. Chem. 1988, 53, 6133. (b) Waldmann, H.; Dräger, M. Tetrahedron Lett. 1989, 30, 4227. (c) Waldmann, H. Liebigs Ann. Chem. 1990, 671. (d) Waldmann, H.; Dräger, M. Liebigs Ann. Chem. 1990, 681.

Waldmann, H. Liebigs Ann. Chem. 1990, 1013.
 Waldmann, H. Synlett 1990, 627; Liebigs Ann. Chem. 1991, 1317. (9) Review: Waldmann, H.; Braun, M. Gazz. Chim. Ital. 1991, 121, 277

⁽¹⁰⁾ Grigg, R. J. Chem. Soc., Chem. Commun. 1982, 384.

entry	no.	\mathbb{R}^1	amino acid	temp (°C)	Lewis acid/solvent	yield (%)	5:6
1	5h	n-prop	Ile-OBzl	0	ZnCl ₂ /THF	65	90:10
2	5i	n-prop	Ile-OMe	-15	ZnCl ₂ /THF	50	90:10
3	5i	n-prop	Ile-OMe	-78 to -20	$TiCl_4/CH_2Cl_2$	37	91:9
4	5i	n-prop	Ile-OMe	-78 to -20	EtAlCl ₂ /CH ₂ Cl ₂	80	94:6
5	5i	n-prop	Ile-OMe	-78 to -20	Et ₂ AlCl/CH ₂ Cl ₂	80	92:8
6	5i	n-prop	Ile-OMe	-78 to -20	MeAlCl ₂ /CH ₂ Cl ₂	74	93:7
7	5i	n-prop	Ile-OMe	-78 to -20	Me ₂ AlCl/CH ₂ Cl ₂	80	93:7
8	5i	n-prop	Ile-OMe	-78 to -20	$BF_3 \cdot Et_2O/CH_2Cl_2$	64	80:20
9	5 k	phenyl	Ile-OMe	-15	ZnCl ₂ /THF	62	92:8
10	5 k	phenyl	Ile-OMe	-78 to -20	$EtAlCl_2/CH_2Cl_2$	21	95:5
11	5 k	phenyl	Ile-OMe	-78 to -20	Et ₂ AlCl/CH ₂ Cl ₂	28	89:11

electron-withdrawing or -donating groups deliver nearly the same results (Table I, entries 5–7). In the reaction sequence shown in Scheme I, derivatives of differently substituted aromatic, aliphatic, and functionalized aldehydes can be used. With Schiff bases of aliphatic aldehydes, the best results are obtained if aluminum compounds are added as catalysts at low temperature and dichloromethane is employed as solvent (Table II). On the other hand, for imines of aromatic aldehydes the best catalyst system is ZnCl_2 in THF at 0 °C to -20 °C. However, TiCl₄ and $\text{BF}_3\text{-}\text{Et}_2\text{O}$ may also be used (Table II, entries 3 and 8). These results markedly differ from earlier observations^{2,3} that only upon treatment with ZnCl_2 in THF the diene **2** reacts with imines to give the desired products in high yields and/or stereoselectivities.

A further surprising result is the fact that the sense of the stereoselection is identical for both the chelating Lewis acids $(\text{ZnCl}_2 \text{ and TiCl}_4, \text{Table II}, \text{entries } 2, 3, \text{ and } 9)$ as well as for the catalysts which are usually only capable of tetracoordination (BF₃-Et₂O, and aluminum Lewis acids, Table II, entries 4–8, 10, and 11).

In analogy to observations obtained for aza-Diels-Alder reactions with amino acid ester imines in aqueous and in organic solution,⁴ (S)-phenylethylamine is less efficient as a chiral mediator in the Mannich-Michael reactions presented here than the valine and isoleucine esters. The Schiff base obtained from this chiral amine and butyraldehyde gave the respective enaminones with a diastereomeric ratio of 75:25 (the absolute configuration of the predominating diastereomer was not determined), whereas the isoleucine methyl ester delivers the corresponding vinylogous amides **5i** and **6i** in a ratio of 93:7. Also phenylethylamine could not be removed from the heterocycles by hydrogenation.

To rationalize the steric course of the tandem Mannich-Michael reactions and to account for the lacking reversal of the stereochemistry upon switching from a chelating to a nonchelating catalyst, we propose the working model illustrated in Scheme II. The nonchelating boron and aluminum Lewis acids most probably coordinate to the imine nitrogen. The amino acid ester then adopts a conformation 8 in which, by analogy to the Felkin-Anh model¹¹ for nucleophilic additions to carbonyl groups, the α C-COOR bond is oriented perpendicular to the C-N double bond, resulting in a parallel arrangement and thus an overlap of the respective σ^* and π^* orbitals (see Scheme II). The attack of the diene then should preferably occur from the re side. According to this model, the chelating Lewis acids ZnCl₂ and TiCl₄, which can additionally coordinate the ester carbonyl group, are expected to reverse the direction of the induction. However, NMR spectroscopic investigations indicate that, in the presence of these Lewis acids, the imine double bond isomerizes under the

reaction conditions (ZnCl₂: 0 °C to -20 °C; TiCl₄: warming from -78 °C to rt), as previously observed by Ojima et al.¹² for TiCl₄-mediated [2 + 2]-cycloadditions between amino acid ester imines and ketene silyl acetals. Thus, the ¹H-NMR spectrum of a solution of valine methyl ester butyraldimine and 1 equiv of ZnCl₂ in THF-d₈ shows two sets of signals for the aldimine proton, and for the amino acid α H, with nearly equal chemical shifts, which differ from the shifts obtained from the uncomplexed imine (0.4 and 1.7 ppm, respectively). The occurrence of these signals (ratio 1:4) points to an equilibrium between cis and trans imine from which the cis imine 9 seems to react faster. It is again attacked preferentially from the *re* side and, therefore, also delivers the diastereomer 5 in excess.

The assumption that ZnCl_2 is chelated by the amino acid ester imines is supported by the observation that with 2 equiv of this Lewis acid the sense of the asymmetric induction is reversed (Table I, entry 11; Table II, entry 2).

This result can be understood by the formation of a complex 10 in which both the imine and the ester carbonyl group are complexed by a $ZnCl_2$ so that the chelation is broken. The working hypothesis illustrated in Scheme II is, in addition, strengthened by findings made for the reaction of tryptophan methyl ester-derived Schiff bases with Danishefsky's diene.¹³ In these cases, too, the outcome of the tandem reactions can be rationalized by the intermediate formation of a nonchelated complex analogous to 10. It is interesting to note that in contrast to the reaction of the imines 1 with the diene 2 the similar transformations with the so-called Brassards diene $(CH_2 = CH(OCH_2))$ - $CH = C(OCH_3, O(SiCH_3)_3)$ proceed via different steric courses and, probably, as a Diels-Alder process. We have discussed the differences between the reactions of the Schiff bases 1 with these electron-rich siloxy dienes in detail elsewhere.4e

To cleave the chiral auxiliary from the enaminones 5, the chemically stable bond between the α carbon of the amino acid and the nitrogen has to be broken. This goal was achieved by making use of a strategy developed by us,^{4e,5} which consists in the conversion of the amino acid α C atom into an easily hydrolyzable acetalic center (Scheme III). For this purpose a Curtius rearrangement served as the key step. The application of a Hofmann degradation by means of a hypervalent iodine compound¹⁴ or of a Lossen¹⁵ rearrangement gave inferior results. To achieve the desired degradation, the methyl ester 5i and the benzyl ester 5r were first converted to the carboxylic acids 11a and 11b by alkaline saponification of the methyl ester and hydrogenation of the benzyl ester, respectively. Treatment of the liberated carboxylic acids with diphenyl phosphorazidate¹⁶ either at 80 °C for 12 h or at 40 °C for 72 h resulted in the formation of the carboxylic acid azides 12a and 12b, which underwent smoothly Curtius rearrangements to yield the isocyanates 13a and 13b. These rearrangement products were trapped as the urethanes 14a and 14b by added benzyl alcohol. Finally, hydrogenolysis and subsequent chromatography delivered the free enaminones 15a and 15b in overall yields of 50-80%. The yield is higher if the rearrangement is carried out at 40 °C.

If desired, the carboxylic acids 11a,b and the acylated acetals 14a and 14b may be isolated and characterized, but for preparative purposes it is more convenient to run the whole reaction sequence as a one-pot procedure without diminishing the overall yield. It should be noted that the final hydrogenolysis is faster if the phosphoric acid ester and the added tertiary amine are first removed by extraction.

An alternative route to the desired vinylogous amides 15 consists in the oxidation of the amino acid ester enolates, e.g. 16, with the sulfonyloxaziridine 17, introduced by Davis¹⁷ (Scheme IV). Unfortunately, from 5i the enaminone 15a could only be obtained in 30% yield by this one-step procedure. A competitive oxidation at C-5 of the heterocycle was not observed. Attempts to remove the amino acid ester via oxidation with lead tetraacetate¹⁸ were not successful.

Enaminones like 15a and 15b are versatile intermediates for the construction of different alkaloids.^{3,9,13,19} To elucidate the absolute configuration of the vinylogous amides obtained from the tandem Mannich-Michael reactions, 5r was converted into the indolizidine alkaloid (R)- δ -coniceine 28, and 5i was transformed into the alkaloid (S)-coniine 22 (Scheme V). To this end, the enaminone 15a obtained from 5i as shown in Scheme III first was acylated to yield the urethane 19 which was then chemoselectively reduced with L-Selectride (Aldrich) to the ketone 20 according to the procedure described by Kunz et al.³ The acylation of the amide function proved to be necessary to effect the desired reduction of the double bond: the direct reduction of the free enaminone 15a was not successful. Finally, after thioketalization, treatment of the acetal 21 with Raney nickel at 80 °C resulted in the simultaneous desulfurization and the removal of the Z protecting group from 21 and yielded (S)-coniine which was isolated as the hydrochloride 22. Similarly, the piperidinone 15b obtained from 5r was cyclized to the lactam 23 by heating in benzene in the presence of DBU, and subsequently the double bond was

⁽¹³⁾ Waldmann, H.; Braun, M.; Weymann, M.; Gewehr, M. Synlett 1991, 881.

⁽¹⁴⁾ Loudon, M.; Radhakrishna, A.; Almond, M.; Blodgett, J.; Boutin, R. J. Org. Chem. 1989, 49, 401.

⁽¹⁵⁾ Hoare, D. G.; Olson, A.; Koshland, D. E., Jr. J. Am. Chem. Soc. 1968, 90, 1638.

⁽¹⁶⁾ Yamada, S.; Shioiri, T. Tetrahedron 1976, 30, 2151.

⁽¹⁷⁾ Davis, F. A. J. Org. Chem. 1984, 49, 3241.
(18) (a) Reider, P. J.; Grabowski, E. J. J. Tetrahedron Lett. 1982, 23, 2293. (b) Lohmar, R.; Steglich, W. Angew. Chem. 1978, 90, 493; Angew. Chem., Int. Ed. Engl. 1978, 17, 493.

^{(19) (}a) Brown, J. D.; Foley, M.; Commins, D. J. Am. Chem. Soc. 1988, 110, 7445. (b) Comins, D.; LaMunyon, D. Tetrahedron Lett. 1989, 30 5053. (c) Tubery, F.; Grierson, D. S.; Husson, H. P. Tetrahedron Lett. 1987, 28, 6457.

reduced to the lactam 24 with L-Selectride. The reaction, however, was not completely chemoselective and the allylic alcohol 25 was found in 28%. The keto function was then deoxygenated via Raney nickel mediated desulfurization of the thioacetal 26, obtained from 24 and ethanedithiol in the presence of BF₃·Et₂O. Finally, desulfurization and reduction of the amide 27 with LiAlH₄ afforded (*R*)- δ coniceine 28. The specific rotations of both synthetic alkaloids 22 and 28 are in agreement with literature data^{20,21} and thereby prove the absolute configuration of the adducts 5i and 5r and the enaminones 15a,b.

In conclusion, amino acid esters prove to be efficient chiral auxiliaries for the Mannich-type transformations. These chiral auxiliaries provide the addition products with high diastereomeric ratios. They may be removed by a straightforward, experimentally simple one-pot procedure. We note that the process described in this paper can readily be extended to the construction of the polycyclic framework of the yohimbine-type alkaloids in enantiomerically pure form by employing imines derived from tryptophan esters.¹³ Both enantiomers of amino acid esters are readily available at low cost, so that their loss during the removal of the auxiliary can easily be tolerated.

Experimental Section

The analytical instruments and general experimental techniques used have already been described elsewhere.^{4c,6,7} A 1 M solution of zinc chloride was prepared by dissolving 13.6 g of anhydrous zinc chloride in 50 mL of THF and, after cooling to room temperature, adding CH_2Cl_2 to a total volume of 100 mL.

General Protocol for the Preparation of the Imines 1. To a solution of 1 mmol of the free amino acid ester in 10 mL of ether or petroleum ether was added 1 mL of the corresponding aldehyde rapidly in one portion. The solution was stirred for 15-20 min, it was then dried with MgSO₄, and the solvent was removed in vacuo. The resulting imines 1 were directly used in the subsequent reactions without further purification.

General Protocol for the Synthesis of the 2,3-Didehydropiperidinones 5 and 6. (1) Using ZnCl₂. To a solution of 1 mmol of the respective imine in 10 mL of THF (at 0 to -15 °C) was added 1 equiv of the Lewis acid (1 M solution in THF/CH₂Cl₂) slowly within 2 min via syringe. The mixture was stirred for 5 min, and then 1.3 equiv of the diene 2 was added during 7 h by a motor-driven syringe to minimize any undesired polymerization of the diene.

(2) Using Aluminum Lewis Acids. A 0.1 M solution of the respective imine in CH_2Cl_2 was cooled to -78 °C, 1 equiv of the corresponding Lewis acid was added, and the diene was added in one portion. The cooling bath was removed, and the reaction mixture was allowed to warm to rt over 1 h, after which time the reaction mixture turned a deep red or black.

For workup in both cases the solution was poured into saturated aqueous NaHCO₃ and extracted twice with 100 mL of ether, followed by one extraction with CH_2Cl_2 . The combined organic phases were dried with MgSO₄, and the solvent was evaporated in vacuo. The resulting dark-colored oil was subjected to flash chromatography using petroleum ether/acetone mixtures (5–6:1) to yield the enaminones 5 as yellowish oils.

According to the procedure described above, the following 2,3-didehydropiperidinones were prepared.

N-[(**R**)-(Methoxycarbonyl)benzyl]-(6S)-2,3-didehydro-6phenylpiperidin-4-one (5a): $[α]^{23}_D = 0.45^\circ$ (c = 0.93, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.5 (m, 10 H, Ph), 6.9 (d, $J_{2:H,3:H}$ = 8.1 Hz, 1 H, 2-H), 5.03 (d, 1 H, 3-H), 4.86 (s, 1 H, α-H), 4.63 (dd, $J_{6:H,5:Ha} = 5.7$ Hz, $J_{6:H,5:Hb} = 10.2$ Hz, 1 H, 6-H), 3.7 (s, 3 H, OCH₃), 2.84 (dd, $J_{5:Ha,5:Hb} = 15.1$ Hz, 1 H, 5-H_a), 2.76 (dd, 1 H, 5-H_b); ¹³C NMR (CDCl₃, 100.6 MHz) δ 190.9 (C-4), 171.4 (C=O), 151.5 (C-2), 138.4 (C-ipso), 133.7 (C-ipso), 129.3, 129.1, 129.0, 128.9, 128.83, 128.7, 127.2 (7 C, Ph), 101.0 (C-3), 65.6 (C-α), 63.1 (OCH₃), 52.4 (C-6), 47.37 (C-5). Anal. Calcd for C₂₀H₁₉NO₃: C 74.74; H 5.95; N 4.35. Found: C, 75.05; H, 5.73; N, 4.68.

N-[(**R**)-(Methoxycarbonyl)benzyl]-(6*S*)-2,3-didehydro-6-(4-methoxyphenyl)piperidin-4-one (5b): $[\alpha]^{25}_{D} = -51^{\circ}$ (*c* = 1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.5 (m, 3 H, Ph, 2-H), 6.9 (m, 7 H, Ph), 5.03 (d, J_{3-H,2-H} = 7.9 Hz, 1 H, 3-H), 4.85 (s, 1 H, α-H), 4.55 (dd, J_{6-H,5-Ha} = 5.3 Hz, J_{6-H,5-Hb} = 13.1 Hz, 1 H, 6-H), 3.76 (s, 3 H, OCH₃), 3.71 (s, 3 H, OCH₃), 2.80 (dd, J_{5-Ha,5-Hb} = 16.4 Hz, 1 H, 5-H_a), 2.65 (dd, 1 H, 5-H_b); ¹³C NMR (CDCl₃, 100.6 MHz) δ 191.2 (C-4), 170.3 (C=O), 159.8 (C-ipso), 151.6 (C-2), 133.7 (C-ipso), 130.1-129 (5 C, Ph), 100.9 (C-3), 65.2 (C-α), 63.1 (OCH₃), 55.1 (C-6), 47.7 (C-5). Anal. Calcd for C₂₁H₂₁NO₄: C, 71.57; H, 6.02; N, 3.99. Found: C, 71.69; H, 5.95; N, 3.95.

N-[(**R**)-(Methoxycarbonyl)benzyl]-(6S)-2,3-didehydro-6-(4-nitrophenyl)piperidin-4-one (5c): $[\alpha]^{23}_{D} = 166.8^{\circ}$ (c = 1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 8.28 (d, J = 8.7 Hz, 2 H, Ph), 7.9 (d, J = 7.6 Hz, 2 H, Ph), 7.5–7.39 (m, 5 H, Ph), 6.97 (d, $J_{2:H,3:H} = 8.0$ Hz, 1 H, 2-H), 5.10 (d, 1 H, 3-H), 4.82 (s, 1 H, α -H), 4.70 (dd, $J_{6:H,5:Ha} = 9.2$ Hz, $J_{6:H,5:Hb} = 6.3$ Hz, 1 H, 6-H), 3.77 (s, 3 H, OCH₃), 2.93 (dd, 1 H, $J_{5:Ha,5:Hb} = 16.4$ Hz, 5-H_a), 2.70 (dd, 1 H, 5-H_b); ¹³C NMR (CDCl₃, 100.6 MHz) δ 189.5 (C-4), 170.2 (C=O), 150.7 (C-2), 148.1 (C-ipso), 145.9 (p-C, PhNO₂), 132.8 (C-ipso), 129–126 (5 C, Ph), 101.6 (C-3), 66.8 (C- α), 62.6 (OCH₃), 52.8 (C-6), 43.6 (C-5). Anal. Calcd for C₂₀H₁₉NO₃: C, 65.57; H, 4.95; N, 7.65. Found: C, 65.49; H, 5.01; N, 7.34.

N-[(R)-(Methoxycarbonyl)benzyl]-(6R)-2,3-didehydro-6-n-propylpiperidin-4-one (5d): $[\alpha]^{23}{}_{\rm D} = -8.1^{\circ}$ (c = 0.95, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.3 (m, 5 H, Ph), 6.55 (d,

⁽²⁰⁾ Tallent, W.; Horning, E. J. Am. Chem. Soc. 1956, 78, 4467.

⁽²¹⁾ Rindahl, B.; Pinder, A.; Pereira, W.; Oppenheimer, N.; Craig, J. J. Chem. Soc., Perkin Trans. 1 1984, 1.

Mannich-Michael Reactions of Amino Acid Ester Imines

 $\begin{array}{l} J_{2:\mathrm{H},3:\mathrm{H}}=7.9~\mathrm{Hz},\,1~\mathrm{H},\,2\mathrm{\cdot H}),\,5.07~(\mathrm{s},\,1~\mathrm{H},\,\alpha\mathrm{-H}),\,4.77~(\mathrm{d},\,1~\mathrm{H},\,3\mathrm{\cdot H}),\\ 3.7~(\mathrm{s},\,3~\mathrm{H},\,\mathrm{OCH}_3),\,3.4~(\mathrm{m},\,1~\mathrm{H},\,6\mathrm{\cdot H}),\,2.84~(\mathrm{dd},\,J_{5\mathrm{\cdot Ha},5\mathrm{\cdot Hb}}=15.1\\ \mathrm{Hz},\,J_{6\mathrm{\cdot H},5\mathrm{\cdot Ha}}=6.4~\mathrm{Hz},\,1~\mathrm{H},\,5\mathrm{\cdot Ha}),\,2.76~(\mathrm{dd},\,1~\mathrm{H},\,5\mathrm{\cdot Hb}),\,1.7~(\mathrm{m},\\ 1~\mathrm{H},\,7\mathrm{\cdot Ha}),\,1.67~(\mathrm{m},\,1~\mathrm{H},\,7\mathrm{\cdot Hb}),\,1.36~(\mathrm{m},\,1~\mathrm{H},\,8\mathrm{\cdot Ha}),\,1.26~(\mathrm{m},\,1~\mathrm{H},\,8\mathrm{\cdot Hb}),\,0.9~(\mathrm{t},\,J=6.9~\mathrm{Hz},\,3~\mathrm{H},\,\mathrm{CH}_3);\,^{13}\mathrm{C}~\mathrm{NMR}~(\mathrm{CDCl}_3,\,100.6\\ \mathrm{MHz})\,\delta~191.2~(\mathrm{C-4}),\,170.9~(\mathrm{C-O}),\,148.9~(\mathrm{C-2}),\,132.6~(\mathrm{C-ipso}),\,129.3,\\ 129.0,\,128.4~(3~\mathrm{C},\,\mathrm{Ph}),\,98.6~(\mathrm{C-3}),\,67.6~(\mathrm{C-\alpha}),\,58.1~(\mathrm{OCH}_3),\,52.4\\ (\mathrm{C-6}),\,39.2~(\mathrm{C-2}),\,31.6~(\mathrm{C-7}),\,18.7~(\mathrm{C-8}),\,14.0~(\mathrm{C-9}).~\mathrm{Anal.}~\mathrm{Calcd}\\ \mathrm{for}~\mathrm{C}_{17}\mathrm{H}_{21}\mathrm{NO}_3;~\mathrm{C},\,71.06;~\mathrm{H},\,7.37;~\mathrm{N},\,4.84.~\mathrm{Found};~\mathrm{C},\,70.89;~\mathrm{H},\\ 7.13;~\mathrm{N},\,4.73.\\ \end{array}$

N-[(S)-1-(Methoxycarbonyl)-2-methylpropyl]-(6R)-2,3didehydro-6-phenylpiperidin-4-one (5e): [α]²³_D = -22.4° (c = 1.07, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.24 (m, 6 H, Ph, 2-H), 5.17 (d, J_{3-H,2-H} = 7.9 Hz, 1 H, 3-H), 4.46 (dd, J_{6-H,5-Ha} = 5.8 Hz, J_{6-H,5-Hb} = 11.4 Hz, 1 H, 6-H), 3.56 (s, 3 H, OCH₃), 3.10 (d, J = 10.8 Hz, 1 H, α-H), 2.76 (dd, J_{5-Ha,5-Hb} = 14.5 Hz, 1 H, 5-H₄), 2.64 (dd, 1 H, 5-H_b), 2.16 (m, 1 H, β-H), 0.9 (d, J = 6.6 Hz, 3 H, CH₃), 0.75 (d, 3 H, CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 190.8 (C-4), 171.8 (C=0), 151.7 (C-2), 138.3 (C-ipso), 128.8, 128.4, 127.8 (Ph), 101.2 (C-3), 68.6 (C-α), 62.9 (OCH₃), 51.8 (C-6), 44.3 (C-5), 28.4 (C-β), 19.2, 19.1 (2 CH₃). Anal. Calcd for C₁₇H₂₁NO₃: C, 71.06; H, 7.33; N, 4.87. Found: C, 71.07; H, 7.53; N, 4.87.

N-[(S)-1-(Methoxycarbonyl)-2-methylpropyl]-(6R)-2,3didehydro-6-(4-methoxyphenyl)piperidin-4-one (5f): $[\alpha]^{23}_{\rm D}$ = 7.8° (c = 1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.24 (d, $J_{2.H,3.H}$ = 7.9 Hz, 1 H, 2-H), 7.16 (d, J = 8.7 Hz, 2 H, Ph), 6.83 (d, 2 H, Ph), 5.13 (d, 1 H, 3-H), 4.39 (dd, $J_{6.H,5.Ha}$ = 5.5 Hz, $J_{6.H,5.Hb}$ = 12.4 Hz, 1 H, 6-H), 3.75 (s, 3 H, OCH₃), 3.58 (s, 3 H, OCH₃), 3.10 (d, J = 10.8 Hz, 1 H, α-H), 2.74 (dd, $J_{5.Ha,5-Hb}$ = 16.4 Hz, 1 H, 5-H_a), 2.58 (dd, 1 H, 5-H_b), 2.13 (m, 1 H, β-H), 0.86 (d, J = 6.6 Hz, 3 H, CH₃), 0.75 (d, 3 H, CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 191.1 (C-4), 170.8 (C=-0), 151.7 (C-ipso), 150.9 (C-2), 130.1 (p-C, PhOCH₃), 128.8 (2 C, Ph), 114.2 (2 C, Ph), 101.2 (C-3), 67.9 (C-α), 62.6 (OCH₃), 55.1 (OCH₃), 51.8 (C-6), 44.4 (C-5), 28.2 (C-β), 19.1, 19.0 (2 CH₃). Anal. Calcd for C₁₈H₂₃NO₄: C, 65.24; H, 6.99; N, 4.23. Found: C, 65.02; H, 6.64; N, 4.11.

N-[(S)-1-(Methoxycarbonyl)-2-methylpropyl]-(6R)-2,3didehydro-6-(4-nitrophenyl)piperidin-4-one (5g): $[\alpha]^{23}_{D} = 4.8^{\circ}$ (c = 1.1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 8.09 (d, J = 8.6 Hz, 2 H, Ph), 7.40 (d, 2 H, Ph), 7.23 (d, J_{2-H,3-H} = 7.9 Hz, 1 H, 2-H), 5.07 (d, 1 H, 3-H), 4.63 (dd, J_{6-H,5-Ha} = 6.5 Hz, J_{6-H,5-Hb} = 8.5 Hz, 1 H, 6-H), 3.43 (s, 3 H, OCH₃), 3.09 (d, J = 10.8 Hz, 1 H, α -H), 2.72 (dd, J_{5-Ha,5-Hb} = 16.4 Hz, 1 H, 5-H_a), 2.54 (dd, 1 H, 5-H_b), 2.17 (m, 1 H, β-H), 0.87 (d, J = 6.6 Hz, 3 H, CH₃), 0.75 (d, 3 H, CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 189.0 (C-4), 169.8 (C=O), 151.0 (C-2), 147.5 (C-ipso), 145.8 (p-C, PhNO₂), 127.1 (2 C, Ph), 124.3 (2 C, Ph), 101.2 (C-3), 70.1 (C-α), 60.3 (OCH₃), 51.7 (C-6), 43.2 (C-5), 28.1 (C-β), 18.9, 18.8 (2 CH₃). Anal. Calcd for C₁₇H₂₀N₂O₅: C, 61.47; H, 5.88; N, 8.45. Found: C, 61.34; H, 6.07; N, 8.54.

N-[(S)-1-(Benzyloxycarbonyl)-(S)-2-methylbutyl]-(6S)-2,3-didehydro-6-*n*-propylpiperidin-4-one (5h): $[α]^{22}_D =$ -120.7° (*c* = 1.24, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.3 (m, 5 H, Ph), 6.99 (d, J_{2.H,3-H} = 7.6 Hz, 1 H, 2-H), 5.15 (s, 2 H, OCH₂Ph), 4.95 (d, 1 H, 3-H), 3.40 (m, 2 H, 6-H, α-H), 2.45 (dd, J_{5-Ha,5-Hb} = 11.2 Hz, J_{5-Ha,6-H} = 6.7 Hz, 1 H, 5-H_a), 2.2 (dd, J_{5-Hb,6-H} = 16 Hz, 1 H, 5-H_b), 2.0 (m, 1 H, β-H), 1.69 (m, 1 H, 7-H_a), 1.53 (m, 1 H, 7-H_b), 1.29 (m, 2 H, CH₂-Ile), 1.1 (m, 2 H, 8-H), 0.9 (m, 9 H, 3 CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 192 (C-4), 171.1 (C=O), 148.5 (C-2), 134.9 (C-ipso), 128.6, 128.5, 128.3 (Ph), 98.9 (C-3), 69.8 (C-α), 67.0 (OCH₂Ph), 57.14 (C-6), 38.8 (C-5), 33.8 (C-β) Ile), 31.2 (C-7), 24.7 (C-8), 18.3 (CH₂ Ile), 15.3 (CH₃ Ile), 13.4 (C-9), 10.4 (CH₃). Anal. Calcd for C₂₁H₂₉NO₃: C, 73.32; H, 8.77; N, 4.06. Found: C, 73.55; H, 8.58; N, 4.16.

N-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6S)-2,3-didehydro-6-*n*-propylpiperidin-4-one (5i): $[\alpha]^{22}D = -178.4^{\circ}$ (*c* = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 6.97 (d, *J*_{2-H,3-H} = 7.6 Hz, 1 H, 2-H), 4.93 (d, 1 H, 3-H), 3.69 (s, 3 H, OCH₃), 3.60 (m, 2 H, 6-H, α -H), 2.6 (dd, *J*_{5-Ha,5-Hb} = 13 Hz, *J*_{5-Ha,6-H} = 7 Hz, 1 H, 5-H_a), 2.5 (dd, *J*_{5-Hb,6-H} = 16 Hz, 1 H, 5-H_b), 1.96 (m, 1 H, β-H Ile), 1.73 (m, 1 H, 7-H_a), 1.56 (m, 1 H, 7-H_b), 1.29 (m, 2 H, CH₂-Ile), 1.2 (m, 1 H, 8-H_a), 1.0 (m, 1 H, 8-H_b), 0.9 (m, 9 H, 3 CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 191.0 (C-4), 171.0 (C=O), 149.0 (C-2), 98.9 (C-3), 69.7 (C- α), 61.7 (OCH₃), 57.0 (C-6), 38.9 (C-5), 34.2 (C- β Ile), 31.2 (C-7), 24.7 (C-8), 18.4 (CH₂ Ile), 15.1 (CH₃), 13.8 (C-9), 10.4 (CH₃). Anal. Calcd for C₂₂H₂₈NO₆: C, 67.27; H, 9.42; N, 5.24. Found: C, 67.27; H, 9.38; N, 5.20.

N-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6R)-2,3-didehydro-6-phenylpiperidin-4-one (5k): $[\alpha]^{23}_{D} = -32^{\circ}$ (c = 1.12, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.30 (m, 6 H, Ph, 2-H), 5.14 (d, $J_{3:H,2:H} = 7.9$ Hz, 1 H, 3-H), 4.44 (dd, $J_{6:H,5:Ha} = 5.8$ Hz, $J_{6:H,5:Hb} = 11.5$ Hz, 1 H, 6-H), 3.54 (s, 3 H, OCH₃), 3.19 (d, J = 10.7 Hz, 1 H, α -H), 2.74 (dd, $J_{5:Ha,5:Hb} = 14.6$ Hz, 1 H, 5-H), 2.63 (dd, 1 H, 5-H_b), 1.9 (m, 1 H, β -CH), 1.64 (m, 1 H, Ile CH_{2b}), 0.76 (t, J = 7.7 Hz, 3 H, Ile CH₃), 0.70 (d, J = 6.3 Hz, 3 H, Ile CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 190.7 (C-4), 170.7 (C=O), 151.0 (C-2), 138.2 (C-ipso), 128.3, 128.1, 127.8 (Ph), 101.1 (C-3), 67.2 (C-α), 62.9 (OCH₃), 51.7 (C-6), 44.2 (C-5), 34.3 (C-β), 24.7 (Ile CH₂), 15.2 (Ile CH₃), 10.4 (Ile CH₃). Anal. Calcd for C₁₈H₂₃NO₃: C, 71.73; H, 7.69; N, 4.65. Found: C, 71.35; H, 7.74; N, 4.62.

N-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6R)-2,3-didehydro-6-(4-nitrophenyl)piperidin-4-one (51): $[\alpha]^{23}_{\rm D}$ = -2.5° (c = 1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 8.14 (d, J = 8.6 Hz, 2 H, Ph), 7.42 (d, 2 H, Ph), 7.25 (d, J_{2-H,3-H} = 7.9 Hz, 1 H, 2-H), 5.12 (d, 1 H, 3-H), 4.64 (dd, J_{6-H,5-Ha} = 6.3 Hz, J_{6-H,5-Hb} = 8.7 Hz, 1 H, 6-H), 3.43 (s, 3 H, OCH₃), 3.20 (d, J = 10.7 Hz, 1 H, α-H), 2.7 (dd, J_{5-Ha,5-Hb} = 16.4 Hz, 1 H, 5-H₈), 2.60 (dd, 1 H, 5-H_b), 2.0 (m, 1 H, β-CH), 1.64 (m, 1 H, Ile CH_{2a}), 0.95 (m, 1 H, 1 le CH_{2b}), 0.81 (t, J = 7.7 Hz, 3 H, CH₃), 0.75 (d, J = 6.5 Hz, 3 H, CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 189.2 (C-4), 169.9 (C=O), 151.2 (C-2), 147.7 (C-ipso), 145.8 (p-C, PhNO₂), 127.1 (2 C, Ph), 124.3 (2 C, Ph), 101.5 (C-3), 68.9 (C-α), 60.8 (OCH₃), 51.8 (C-6), 43.4 (C-5), 34.2 (C-β), 24.7 (Ile CH₂), 15.1 (Ile CH₃), 10.4 (Ile CH₃). Anal. Calcd for C₁₈H₂₂N₂O₅: C, 62.42; H, 6.40; N, 8.08. Found: C, 62.25; H, 6.68; N, 8.05.

N-[(S)-1-(Benzyloxycarbonyl)-(S)-2-methylbutyl]-(6R)-2,3-didehydro-6-(4-nitrophenyl)piperidin-4-one (5m): [α]²³_D = 16.4° (c = 1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 8.11 (d, J = 8.7 Hz, 2 H, Ph), 7.5–7.3 (m, 8 H, Ph, 2-H), 5.15 (d, J_{2-H,3-H} = 7.9 Hz, 1 H, 3-H), 5.1–4.9 (2 d, J = 11.8 Hz, 2 H, OCH₂), 4.52 (t, 1 H, 6-H), 3.20 (d, J = 10.8 Hz, 1 H, α-H), 2.62 (d, J_{5-H,6-H} = 8.0 Hz, 1 H, 5-H). 2.04 (m, 1 H, β-CH), 1.68 (m, 1 H, Ile CH_{2a}), 0.98 (m, 1 H, Ile CH_{2b}), 0.84 (t, 3 H, Ile CH₃), 0.78 (d, J = 6.5 Hz, 3 H, Ile CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 189.5 (C-4), 169.5 (C==O), 150.9 (C-2), 147.9 (C-ipso), 145.6 (p-C, PhNO₂), 134.8 (C-ipso), 128-126 (6 C, Ph), 102.1 (C-3), 68.8 (C-α), 60.0 (OCH₃), 51.6 (C-6), 43.6 (C-5), 34.3 (β-C), 24.8 (CH₂ Ile), 15.2 (CH₃), 10.5 (CH₃). Anal. Calcd for C₂₄H₂₆N₂O₅: C, 68.23; H, 6.20; N, 6.63. Found: C, 68.32; H, 6.46; N, 6.39.

N-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6R)-2,3-didehydro-6-(4-methoxyphenyl)piperidin-4-one (5n): [α]²³_D = -9.2° (c = 1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.25 (d, J_{2H,3-H} = 7.9 Hz, 1 H, 2-H), 7.14 (d, 2 H, Ph, J = 8.6 Hz), 6.82 (d, 2 H, Ph), 5.12 (d, 1 H, 3-H), 4.37 (dd, J_{6-H,5-Ha} = 5.3 Hz, J_{6-H,5-Hb} = 12.5 Hz, 1 H, 6-H), 3.73 (s, 3 H, OCH₃), 3.57 (s, 3 H, OCH₃), 3.48 (d, J = 10.7 Hz, 1 H, α-H), 2.74 (dd, J_{5-Ha,5-Hb} = 16.4 Hz, 1 H, 5-H_e), 2.55 (dd, 1 H, 5-H_b), 1.8 (m, 1 H, β-CH), 1.64 (m, 1 H, Ile CH_{2a}), 0.95 (m, 1 H, Ile CH_{2b}), 0.75 (t, J = 7.7 Hz, 3 H, Ile CH₃), 0.71 (d, J = 6.3 Hz, 3 H, Ile CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 191.3 (C-4), 170.9 (C=-O), 159.6 (C-ipso), 151.0 (C-2), 130.0 (ρ-C, PhOCH₃), 128.8 (2 C, Ph), 114.2 (2 C, Ph), 101.1 (C-3), 66.6 (C-α), 62.7 (OCH₂), 55.1 (OCH₃, Ph), 51.7 (C-6), 44.4 (C-5), 34.4 (C-β), 24.7 (CH₂ Ile), 15.2 (Ile CH₃), 10.5 (Ile CH₃). Anal. Calcd for C₁₉H₂₅NO₄: C, 68.68; H, 7.60; N, 4.26. Found: C, 68.71; H, 7.69; N, 4.45.

N-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6S)-2,3-didehydro-6-(2-methylpropyl)piperidin-4-one (50): $[\alpha]^{23}_{\rm D}$ = -134.2° (c = 1.1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.1 (d, J_{2-H,3-H} = 7.6 Hz, 1 H, 2-H), 5.00 (d, 1 H, 3-H), 3.7 (s, 3 H, OCH₃), 3.40 (m, J = 10.6 Hz, 1 H, α-H), 3.2 (ddd, J₁ = 4.4 Hz, J₂ = 7.7 Hz, J₃ = 8.3 Hz, 1 H, 6-H), 2.5 (dd, J_{5-Ha,5-Hb} = 9.6 Hz, J_{5-Ha,6-H} = 7.7 Hz, 1 H, 5-H_a), 2.37 (dd, J_{5-Hb,6-H} = 16 Hz, 1 H, 5-H_b), 2.06 (m, 2 H, 7-H, β-H Ile), 1.73 (m, 1 H, Ile CH₂), 1.3 (m, 1 H, Ile CH₂), 0.9 (m, 12 H, 4 CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 191.6 (C-4), 171.5 (C=O), 149.3 (C-2), 99.5 (C-3), 69.7 (C-α), 62.9 (OCH₃), 52.2 (C-6), 35.2 (C-5), 34.2 (C-β Ile), 29.2 (C-7), 25.6 (CH₂ Ile), 19.3, 17.0 (CH₃), 15.1 (CH₃), 11.0 (CH₃). Anal. Calcd for C₁₆H₂₅NO₃: C, 67.39; H, 9.42; N, 5.42. Found: C, 67.21; H, 9.52; N, 5.16.

N-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6S)-2,3-didehydro-6-*n*-pentylpiperidin-4-one (5p): $[\alpha]^{23}_{D} = -155.7^{\circ}$ (c = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 6.98 (d, $J_{2:H,3:H}$ = 7.0 Hz, 1 H, 2-H), 4.9 (d, 1 H, 3-H), 3.7 (s, 3 H, OCH₃), 3.39 (m, 2 H, 6-H, α -H), 2.6 (dd, $J_{5:Ha,5:Hb}$ = 11 Hz, $J_{5:Ha,6:H}$ = 6.3 Hz, 1 H, 5-H_a), 2.3 (dd, $J_{5:Hb,6:H}$ = 0.8 Hz, 1 H, 5-H_b), 1.96 (m, 1 H, β -H IIe), 1.73 (m, 1 H, 7-H_a), 1.6 (m, 1 H, 7-H_b), 1.30 (m, 6 H, 8-H, 9-H, Ile CH₂), 0.9 (m, 9 H, 3 CH₃). ¹³C NMR (CDCl₃, 1006 MHz) δ 191.1 (C-4), 171.0 (C=O), 149.1 (C-2), 98.9 (C-3), 69.8 (C- α), 62.2 (OCH₃), 57.2 (C-6), 39.0 (C-5), 34.1 (C- β IIe), 28.9, 27.4, 27.3, 22.0 (CH₂), 15.4 (CH₃), 13.8 (C-10), 10.4 (CH₃). Anal. Calcd for C₁₈H₂₆NO₃: C, 68.54; H, 9.35; N, 5.00. Found: C, 68.62; H, 9.24; N, 4.78.

N-[(S)-1-(Benzyloxycarbonyl)-2-methylpropyl]-(6S)-6-[3-(methoxycarbonyl)propyl]-2,3-didehydropiperidin-4-one (5q): $[\alpha]^{23}_{\rm D} = -131.5^{\circ}$ (c = 1.21, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.3 (s, 5 H, Ph), 7.0 (d, J_{2-H,3-H} = 7.8 Hz, 1 H, 2-H), 5.15 (s, 2 H, OCH₂Ph), 4.98 (d, 1 H, 3-H), 3.62 (s, 3 H, OCH₃), 3.45 (m, 1 H, 6-H), 3.3 (d, J = 10.9 Hz, 1 H, α-H), 2.45 (dd, J_{5-Ha,5-Hb} = 12.0 Hz, J_{5-Ha,6-H} = 6.2 Hz, 1 H, 5-H_a), 2.25 (dd, 3 H, 5-H_b, β-H, 7-H_a), 1.8-1.1 (m, 5 H, 7-H_b, 8-H, 9-H), 0.9 (m, 6 H, Val CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 190.8 (C-4), 173.3 (C=0), 170.2 (C=0), 148.7 (C-2), 135.0 (C-ipso), 128.7, 128.6, 128.5 (Ph), 99.2 (C-3), 71.2 (C-α), 67.3 (OCH₂Ph), 57.6 (OCH₃), 51.6 (C-6), 38.5 (C-5), 33.5 (C-6 Val), 28.7 (C-7), 28.0 (C-8), 20.3 (C-9), 19.2, 19.1 (CH₃ Val). Anal. Calcd for C₂₂H₂₂NO₅: C, 68.36; H, 7.55; N, 3.61. Found: C, 68.55; H, 7.59; N, 3.53.

N-[(S)-1-(Benzyloxycarbonyl)-2-methylpropyl]-(6S)-6-[2-(ethoxycarbonyl)ethyl]-2,3-didehydropiperidin-4-one (5r): [α]²³_D = -137.5° (c = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.3 (s, 5 H, Ph), 7.22 (d, J_{2-H,3-H} = 6.8 Hz, 1 H, 2-H), 5.17 (s, 2 H, OCH₂Ph), 4.9 (d, 1 H, 3-H), 4.10 (q, J = 12 Hz, 2 H, OCH₂), 3.45 (m, 1 H, 6-H), 3.39 (d, J = 10.6 Hz, 1 H, α-H), 2.47 (dd, J_{5-Ha,5-Hb} = 11.0 Hz, J_{5-Ha,6-H} = 7.0 Hz, 1 H, 5-H_a), 2.3 (m, 4 H, 5-H_b, β-H, 7-H), 1.9 (m, 1 H, 8-H_a), 1.69 (m, 1 H, 8-H_b), 1.2 (t, 3 H, OCH₂CH₃), 0.9 (dd, 6 H, Val CH₃); ¹³C NMR (CDCl₃, 1006 MHz) δ 190.4 (C-4), 172.0 (C=0), 170.3 (C=0), 148.3 (C-2), 135.0 (C-ipso), 128.7, 128.6, 128.5, (Ph), 99.3 (C-3), 71.6 (C-α), 67.3 (OCH₂Ph), 60.6 (OCH₂), 56.6 (C-6), 38.5 (C-5), 31.8 (C-β Val), 29.7 (C-7), 27.9 (C-8), 19.3, 19.2 (CH₃ Val), 14.1 (CH₃). Anal. Calcd for C₂₂H₂₉NO₆: C, 68.32; H, 7.54; N, 3.61. Found: C, 68.70; H, 7.45; N, 3.62.

N-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6S)-2,3-didehydro-6-[3-(2-methyl-1,3-dithian-2-yl)propyl]piperidin-4-one (5s): $[α]^{22}_{D} = -99.1^{\circ}$ (c = 1.15, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 6.9 (d, $J_{2:H,3:H} = 7.0$ Hz, 1 H, 2-H), 4.93 (d, 1 H, 3-H), 3.7 (s, 3 H, OCH₃), 3.40 (m, 2 H, 6-H, α-H), 2.7 (m, 4 H, SCH₂), 2.67 (dd, $J_{6:Ha,5:Hb} = 14.4$ Hz, $J_{5:Ha,6:H} = 6$ Hz, 1 H, 5-H_a), 2.3 (dd, $J_{5:Hb,6:H} = 3$ Hz, 1 H, 5-H_b), 1.8 (m, 5 H, β-H Ile, 7-H, SCH₂CH₂), 1.5 (m, 7 H), 1.2 (m, 8 H), 0.9 (m, 9 H, 3 CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 191.0 (C-4), 171.0 (C=0), 148.9 (C-2), 99.2 (C-3), 70.0 (C-α), 65.3 (SCS), 61.7 (OCH₃), 57.1 (C-6), 48.5 (CH₂S), 41.5 (CH₂S), 39.1 (C-5), 34.2 (C-β Ile), 29.2 (C-7), 27.3 (C-11), 26.4, 25.2, 25.0, 22.6 (CH₂), 15.1 (CH₃), 10.4 (CH₃). Anal. Calcd for C₂₀H₃₃NO₃S₂: C, 60.11; H, 8.32; N, 3.51. Found: C, 59.86; H, 8.44; N, 3.45.

N-[[(S)-1-(Methoxycarbonyl)ethyl]phenyl]-(6S)-2,3-didehydro-6-*a*-propylpiperidin-4-one (5t): $[α]^{22}_D = -196.7^\circ$ (*c* = 2, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.3 (m, 6 H, 2-H, Ph), 4.95 (dd, $J_{3:H,2:H} = 7.3$ Hz, J = 0.8 Hz, 1 H, 3-H), 4.0 (dd, J = 6.7 Hz, J = 7.8 Hz, 1 H, α-H), 3.7 (s, 3 H, OCH₃), 3.40 (m, 1 H, 6-H), 3.28 (dd, J = 11 Hz, J = 6.6 Hz, 1 H, β-H), 3.0 (dd, 1 H, β-H), 2.65 (dd, $J_{5:Ha,5:Hb} = 11$ Hz, $J_{5:Ha,6:H} = 6.8$ Hz, 1 H, 5-H_a), 2.2 (dd, $J_{5:Hb,6:H} = 3$ Hz, 1 H, 5-H_b), 1.40 (m, 1 H, 7-H_a), 1.1–0.9 (m, 3 H, 7-H_b, 8-H), 0.75 (m, 9 H, 3 CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 191.0 (C-4), 170.5 (C=0), 148.4 (C-2), 135.7 (C-ipso), 128.6, 128.4, 127.9 (Ph), 98.6 (C-3), 65.8 (C-α), 58.0 (OCH₃), 52.5 (C-6), 39.1 (C-5), 36.2 (C-β Phe), 31.4 (C-7), 18.2 (C-8), 13.8 (C-9). Anal. Calcd for C₁₈H₂₃NO₃: C, 71.73; H, 7.69; N, 4.65. Found: C, 71.29; H, 7.82; N, 4.64.

Removal of the Chiral Auxiliary Group: Liberation of the Carboxylic Acids. (a) From the Methyl Ester 5i. To a solution of 1 g (3.7 mmol) of 5i in 100 mL of aqueous methanol (4:1) was added 100 mg of LiOH, and the mixture was heated to 40 °C for 3 h. The solvent was removed in vacuo; the remaining oily residue was taken up in water and extracted with ether. The aqueous phase was acidified and extracted three times with CH_2Cl_2 . The combined organic phases were dried with MgSO₄, and the solvent was evaporated to give 900 mg (95%) of the acid 11a which was used without further purification.

(b) From the Benzyl Ester 5r. To a solution of 1.2 g (3.4 mmol) of 5r in 70 mL of methanol was added 100 mg of 5% Pd/charcoal, and the mixture was stirred under 1 atm of hydrogen for 5 h (monitored by TLC). The reaction mixture was filtered through a Celite pad and washed with methanol. The filtrate was evaporated to dryness to afford 850 mg (96%) of 11b which was used without further characterization.

N-[(S)-1-Carboxy-(S)-2-methylbutyl]-(6S)-2,3-didehydro-6-*a*-propylpiperidin-4-one (11a): $[\alpha]^{23}_{D} = 120^{\circ}$ (c = 1.1, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 11.4 (s, 1 H, COOH), 7.1 (d, $J_{2+H,3-H} = 7.0$ Hz, 1 H, 2-H), 5.1 (d, 1 H, 3-H), 3.51 (m, 1 H, 6-H), 2.75 (d, J = 10.6 Hz, 1 H, α -H), 2.75 (dd, $J_{5+Ha,5-Hb} = 12.1$ Hz, $J_{5+Ha,6-H} = 7$ Hz, 1 H, 5-H_a), 2.38 (dd, $J_{5-Hb,6-H} = 13$ Hz, 1 H, 5-H_b), 1.98 (m, 1 H, β -H Ile), 1.76 (m, 1 H, 7-H_a), 1.54 (m, 1 H, 7-H_b), 1.42 (m, 2 H, Ile CH₂), 1.36 (m, 2 H, 8-H), 0.9 (m, 9 H, 3 CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 192.1 (C-4), 172.0 (C=O), 151.7 (C-2), 97.3 (C-3), 70.6 (C-α), 57.3 (C-6), 37.6 (C-5), 34.2 (C-β) Ile), 30.0 (C-7), 25.0 (C-8), 18.4 (CH₂ Ile), 15.4 (CH₃), 13.9 (C-9), 10.9 (CH₃). Anal. Calcd for C₁₄H₂₃NO₃: C, 66.37; H, 9.15; N, 5.53. Found: C, 66.06; H, 9.10; N, 5.23.

General Procedure for the Curtius Rearrangement and Subsequent Hydrogenation. To a suspension of 1 g (3.9 mmol) of the acid 11 in 50 mL of toluene under an argon atmosphere was slowly added 0.6 mL (4 mmol) of triethylamine until all of the acid dissolved. The solution was cooled to 0 °C, and 0.9 mL (5 mmol) of diphenyl phosphorazidate and 0.6 mL (5.5 mmol) of benzyl alcohol were added during 10 min. The cooling bath was removed, and the solution was stirred at rt until the evolution of nitrogen ceased and then stirred for an additional 72 h at 40 °C or kept at 80 °C overnight. The reaction mixture was poured into water and extracted three times with ether. The combined organic phases were washed three times each with 1 N NaHCO₃ and 1 N HCl and dried with MgSO₄, and the solvent was removed in vacuo. The crude product was taken up in 70 mL methanol, 250 mg of 5% Pd/charcoal was added, and the mixture was stirred under 1 atm of hydrogen at rt for 5 h. After filtration of the mixture through a Celite pad, the solvent was removed in vacuo, and the residue was subjected to flash chromatography using petroleum ether/acetone (3:1 v/v) as eluent. If the rearrangement starting from 11a was carried out at rt for 3 d, 440 mg (80%) of the enaminone 15a was obtained as a colorless oil. When the reaction was carried out at 80 °C overnight, the yield was 50%.

(6S)-2,3-Didehydro-6-z-propylpiperidin-4-one (15a): $[\alpha]^{23}_{D}$ = 325.5° (c = 1.07, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.13 (dd, J_{2-H,3-H} = 6.9 Hz, J_{2-H,NH} = 7.2 Hz, 1 H, 2-H), 6.43 (s, 1 H, NH), 4.83 (d, 1 H, 3-H), 3.55 (m, 1 H, 6-H), 2.32 (dd, J_{5-Ha,5-Hb} = 11.0 Hz, J_{5-Ha,6-H} = 5.4 Hz, 1 H, 5-H_a), 2.2 (dd, J_{5-Hb,6-H} = 13 Hz, 1 H, 5-H_b), 1.5 (m, 1 H, 7-H_a), 1.45 (m, 1 H, 7-H_b), 1.25 (m, 2 H, 8-H), 0.9 (t, J = 7.4 Hz, 3 H, 9-H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 192.4 (C-4), 151.5 (C-2), 97.6 (C-3), 52.7 (C-6), 41.6 (C-5), 35.9 (C-7), 18.3 (C-8), 13.9 (C-9). Anal. Calcd for C₈H₁₃NO: C, 69.03; H, 9.41; N, 10.06. Found: C, 69.03; H, 9.44; N, 9.79.

(6S)-6-[2-(Ethoxycarbonyl)ethyl]-2,3-didehydropiperidin-4-one (15b). The benzyl ester 5r (11.1 g, 28.4 mmol) was dissolved in 250 mL of methanol, and 200 mg of 5% Pd/ charcoal was added. The mixture was stirred under hydrogen gas for 4 h and then evaporated in vacuo. The carboxylic acid 11b, thus liberated, was used immediately in the subsequent reaction. The Curtius reaction was carried out at 80 °C overnight as described for 15a to give 2.81 g (50%) of the enaminone 15b: $[\alpha]^{23}_{D} = 224.1^{\circ} (c = 1.1, CH_2Cl_2); ^{1}H NMR (CDCl_3, 400 MHz)$ δ 7.13 (t, $J_{2:H,3:H}$ = 7.0 Hz, 1 H, 2-H), 5.99 (s, broad, 1 H, NH), 4.93 (d, 1 H, 3-H), 4.10 (q, J = 12 Hz, 2 H, OCH₂), 3.65 (dddd, $J_1 = 5.8, J_2 = 6.1, J_3 = 11.7, J_4 = 12.1$ Hz, 1 H, 6-H), 2.40 (m, 4 H, 5-H, 7-H), 1.96 (m, 1 H, 8-H_a), 1.80 (m, 1 H, 8-H_b), 1.2 (t, 3 H, OCH₂CH₃); ¹³C NMR (CDCl₃, 100.6 MHz) δ 192.4 (C-4), 173.3 (C=O), 151.1 (C-2), 98.8 (C-3), 60.9 (OCH₂), 52.8 (C-6), 41.7 (C-5), 30.4 (C-7), 28.6 (C-8), 14.1 (CH₃). Anal. Calcd for C₁₀H₁₅NO₃: C, 60.90; H, 7.67; N, 7.1. Found: C, 60.57; H, 7.81; N, 6.87.

N-(Benzyloxycarbonyl)-(6S)-2,3-didehydro-6-n-propylpiperidin-4-one (19). To a solution of 1.36 g (9.6 mmol) of enaminone 15a in 70 mL of THF was added a solution of 6 mL (9.6 mmol) of butyllithium (1.6 M in hexane). A white precipitate formed which dissolved again when 1.3 mL (1.1 equiv) of (benzyloxy)carbonyl chloride was added via syringe. The reaction mixture was gradually warmed to rt within 50 min, the THF was evaporated, and 70 mL of CH₂Cl₂ was added. After extraction with 1 N NaHCO₃ and drying of the organic phase with MgSO₄, the solvent was removed in vacuo. The amide **19** (2.18 g, 85%) was purified by flash chromatography with petroleum ether/acetone (4:1, v/v) as eluent: $[\alpha]^{23}_{D} = -86.7^{\circ}$ (c = 1.0, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.7 (s, broad, 1 H, 2-H), 7.3 (s, 5 H, Ph), 5.27 (m, 3 H, 3-H, OCH₂Ph), 4.6 (s, broad, 1 H, 6-H), 2.75 (dd, $J_{5-Ha,5-Hb} = 11.2$ Hz, $J_{5-Ha,6-H} = 6.6$ Hz, 1 H, 5-H₆), 2.39 (dd, $J_{5-Hb,6-H} = 17$ Hz, 1 H, 5-H_b), 1.52 (m, 2 H, 7 H), 1.32 (m, 1 H, 8-H₂), 1.28 (m, 1 H, 8-H_b), 0.85 (t, J = 7.2 Hz, 3 H, 9-H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 192.4 (C-4), 151.5 (C=O), 141.0 (C-2), 134.3 (C-6), 39.5 (C-5), 32.6 (C-7), 18.7 (C-8), 13.6 (C-9). Anal. Calcd for C₁₆H₁₉NO₃: C, 70.03; H, 7.01; N, 5.10. Found: C, 70.10; H, 7.12; N, 5.47.

N-(Benzyloxycarbonyl)-(6S)-6-n-propylpiperidin-4-one (20). To a solution of 2.1 g (7.63 mmol) of the enaminone 19 at -78 °C was slowly added 7.7 mL of a 1 M solution of L-Selectride via syringe over 5 min. The reaction mixture was kept at that temperature for 15 min and was then warmed to rt over 30 min. Water (2 mL) was added, and the solvent was evaporated. Chromatography of the residue with petroleum ether/acetone (4:1, v/v) yielded 1.7 g (81%) of the ketone 20: $[\alpha]^{23}_{D} = -13.8^{\circ}$ (c = 1.05, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.3 (s, 5 H, Ph), 5.14 $(d, J = 3.5 Hz, 2 H, OCH_2-Ph), 4.6 (s, br, 1 H, 2-H_a), 4.3 (s br, 1 H, 2-H$ $\begin{array}{l} (d, 5 - 5.5 \text{ Hz}, 2 \text{ H}, 5 \text{ (d)}, 4 \text{ H}, 6 \text{ H}), 2.6 (\text{dd}, J_{5\text{Ha}5\text{ Hb}} = 10.5 \text{ Hz}, J_{5\text{ Ha}6\text{ H}} \\ = 6.3 \text{ Hz}, 1 \text{ H}, 5 \text{ H}_{a}), 2.4 (\text{s}, \text{br}, 1 \text{ H}, 5 \text{ H}_{b}), 2.27 (\text{m}, 2 \text{ H}, 3 \text{ H}), \\ \end{array}$ 1.3 (m, br, 4 H, 7-H, 8-H), 0.85 (t, J = 7.2 Hz, 3 H, 9-H); ¹³C NMR (CDCl₃, 100.6 MHz) & 204.5 (C-4), 155.3 (C=O), 136.3 (C-ipso), 128.6, 128.3, 127.8 (Ph), 67.4 (OCH₂Ph), 53.1 (C-6), 49.3 (C-2) 40.3 (C-3), 38.5 (C-5), 34.3 (C-7), 18.7 (C-8), 13.5 (C-9). Anal. Calcd for C₁₆H₂₁NO₃: C, 69.70; H, 7.68; N, 5.09. Found: C, 69.36; H, 7.51; N, 5.50.

N-(Benzyloxycarbonyl)-(6S)-4-(1,3-dithiolan-4-yl)-6-npropylpiperidine (21). To a solution of 1.5 g (5.5 mmol) of ketone 20 in 70 mL of CH₂Cl₂ were added 0.7 mL of ethanedithiol and 3 g of molecular sieves (4 Å). The mixture was cooled to 0 °C, and 3.26 mL (25.5 mmol) of BF3 Et2O was added. The reaction mixture was stirred overnight, poured into 50 mL of 1 N NaHCO₃, and extracted twice with 50 mL of CH₂Cl₂. The combined organic phases were dried with MgSO4, and the solvent was removed in vacuo. After flash chromatography of the residue with petroleum ether/acetone (5:1, v/v) 1.49 g (78%) of the thicketal 21 was obtained: $[\alpha]^{23}_{D} = -12.6^{\circ}$ (c = 1.07, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.3 (s, 5 H, Ph), 5.14 (d, J = 3.5 Hz, 2 H, OCH₂Ph), 4.32 (dd, J = 7.2 Hz, J = 13 Hz, 1 H, 2-H_a), 4.0 (dd, 1 H, 2-H_b), 3.3 (m, 4 H, SCH₂), 3.1 (ddd, $J_1 = 3.5$ Hz, $J_2 = 6.0$ Hz, $J_3 = 11.1$ Hz, 1 H, 6-H), 2.6 (dd, $J_{5-Ha,5-Hb} = 16.0$ Hz, $J_{5-Ha,6-H} = 6.0$ Hz, 1 H2, 111, 0-11), 2.5 (dd, $J_{5-Ha,5-Hb} = 10.5 122$, $J_{5-Ha,6-H} = 0.5 112$, 1 H, 5-H_a), 2.15 (dd, $J_{5-Hb,6-H} = 14.2$ Hz, 1 H, 5-H_b), 1.9 (m, 2 H, 3-H), 1.75 (m, 1 H, 7-H_a), 1.62 (m, 1 H, 7-H_b), 1.27 (m, 2 H, 8-H), 0.85 (t, J = 7.8 Hz, 3 H, 9-H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 155.3 (C=O), 136.3 (C-ipso), 128.6, 128.3, 127.8 (Ph), 67.2 (OCH₂Ph), 64.3 (C-4), 51.7 (C-6), 42.9 (C-2), 42.1, 40.1 (SCH₂-CH₂S), 38.5 (C-3), 37.4 (C-5), 33.6 (C-7), 19.9 (C-8), 13.5 (C-9). Anal. Calcd for C₁₈H₂₅NO₂S₂: C, 61.86; H, 6.68; N, 4.01. Found: C, 61.91; H, 6.86; N, 4.07.

(S)-2-Propylpiperidine [(S)-Coniine, 22]. To a solution of 1.1 g (3.1 mmol) of the thioketal 21 in 70 mL of 2-propanol was added 2.5 g of freshly prepared neutral washed Raney nickel, and the mixture was heated under a hydrogen atmosphere at reflux overnight. The suspension was filtered through Celite, and the pad was thoroughly washed with methanol. The filtrate was acidified with a solution of HCl in methanol. The solvent was evaporated, and the residue was recrystallized from CH₂Cl₂/ether to yield 0.28 g (89%) of (S)-coniine hydrochloride: $[\alpha]^{23}_{D} = -5.8^{\circ}$ (c = 0.5, ethanol) (lit.²¹ -6.9°, c = 1.5, ethanol); mp 209 °C (lit.²¹ mp 215 °C); ¹³C NMR (CDCl₃, 100.6 MHz) δ 57.1 (CH₂), 44.6 (CH), 35.2, 27.9, 22.3, 22.0, 18.5 (5 CH₂), 13.5 (CH₃).

(6S)-2,3-Didehydroindolizidine-4,9-dione (23). To a solution of 1.7 g (8.62 mmol) of the enaminone 15b in benzene was added 1.28 mL (8.6 mmol) of DBU, and the reaction was heated at reflux for 18 h. The solvent was removed in vacuo, and 1 g (77%) of the desired lactam was isolated by flash chromatography of the residue, eluting with petroleum ether/acetone (1.5:1, v/v): $[\alpha]^{23}_{D} = 449.0^{\circ}$ (c = 1.04, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ 7.68 (d, $J_{2:H,3:H} = 7.9$ Hz, 1 H, 2-H), 5.43 (dd, J = 0.7 Hz, 1 H, 3-H), 4.16 (dddd, $J_1 = 4.4$, $J_2 = 5.9$, $J_3 = 8.6$, $J_4 = 10.5$ Hz, 1 H, 6-H), 2.68 (dd, $J_1 = 0.9$, $J_2 = 4.5$ Hz, 1 H, 5-H_a), 2.60 (m, 3 H, 5-H_b, 7-H), 1.85 (m, 2 H, 8-H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 193.2 (C-4), 171.5 (C=0), 137.6 (C-2), 109.0 (C-3), 55.4 (C-6), 43.2 (C-5), 30.8 (C-7), 26.0 (C-8). Anal. Calcd for C₈H₉NO₂: C, 63.57; H, 6.00; N, 9.27. Found: C, 63.42; H, 5.93; N, 9.08.

(6S)-Indolizidine-4,9-dione (24). As described for 20, 900 mg (5.95 mmol) of the enaminone 23 was treated with 6.25 mL of a 1 M solution of L-Selectride. Chromatography was performed with CH₂Cl₂/MeOH (50:1, v/v) to yield 0.45 g (50%) of the lactam 24 and 0.26 g (28%) of the allylic alcohol 25: $[\alpha]^{23}_{D} = -34.9^{\circ}$ ($c = 1.6, CH_2Cl_2$); ¹H NMR (CDCl₃, 400 MHz) δ 4.36 (ddd, $J_1 = 2.9$ Hz, $J_2 = 6.7$ Hz, $J_3 = 9.7$ Hz, 1 H, 2-H_a), 3.7 (dddd, $J_1 = 3.83$ Hz, $J_2 = 5.6$ Hz, $J_3 = 7.5$ Hz, $J_4 = 9.4$ Hz, 1 H, 6-H), 2.9 (ddd, $J_1 = 5.4$ Hz, $J_2 = 9.7$ Hz, $J_3 = 10.9$ Hz, 1 H, 2-H_b), 2.53 (dd, $J_{5-Ha,5-Hb} = 14.1$ Hz, $J_{5-Ha,6-H} = 7$ Hz, 1 H, 5-H_a), 2.45–2.2 (m, 4 H, 5-H, 3-H, 7-H_a, 8-H), 1.72 (dddd, $J_1 = 5.4$ Hz, $J_2 = 7.2$ Hz, $J_3 = 9.4$ Hz, $J_4 = 12.7$ Hz, 1 H, 7-H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 206.3 (C-4), 173.5 (C=O), 56.3 (C-6), 48.5 (C-2), 39.7 (C-5), 37.9 (C-3), 29.5 (C-7), 24.9 (C-8). Anal. Calcd for C₈H₁₁NO₂: C, 62.73; H, 7.24; N, 9.14. Found: C, 62.50; H, 7.20; N, 9.20.

(6S)-4-(1,3-Dithiolan-4-yl)indolizidin-9-one (26). As described for 21, 440 mg (2.87 mmol) of 24 was reacted with 1.1 mL (3 equiv) of BF₃:Et₂O and 0.36 mL (1.5 equiv) of ethanedithiol. Chromatography was performed with CH₂Cl₂/MeOH (30:1, v/v) to afford 520 mg (78%) of the thioketal 26: $[\alpha]^{23}_{D} = 38.7^{\circ}$ ($c = 1.0, CH_2Cl_2$); ¹H NMR (CDCl₃, 400 MHz) δ 4.12 (ddd, $J_1 = 3.3$ Hz, $J_2 = 4.8$ Hz, $J_3 = 8.7$ Hz, 1 H, 2-H_a), 3.6 (dddd, $J_1 = 3.2$ Hz, $J_2 = 3.5$ Hz, $J_3 = 3.9$ Hz, $J_4 = 7.4$ Hz, 1 H, 6-H), 3.3 (s, 4 H, SCH₂CH₂S), 2.86 (ddd, $J_1 = 3.1$ Hz, $J_2 = 9.1$ Hz, $J_3 = 13.0$ Hz, 1 H, 2-H_b), 2.3 (m, $J_1 = 13.1$ Hz, $J_2 = 7.4$ Hz, 2 H, 3-H), 2.2 (m, 2-H), 2.0 (m, 1 H), 1.5 (m, 1 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 173.3 (C=O), 65.5 (C-4), 56.2 (C-6), 48.9 (C-2), 40.5 (C-5), 39.6 and 39.5 (SCH₂CH₂S), 37.9 (C-3), 30.1 (C-7), 24.5 (C-8). Anal. Calcd for C₁₀H₁₅NOS₂: C, 52.27; H, 6.59; N, 6.11. Found: C, 51.98; H, 6.66; N, 6.08.

(6*R*)-Indolizidin-9-one (27). As described for 22, 480 mg (2.07 mmol) of the thioketal 26 was treated with 2.5 g of Raney nickel (neutral washed). After filtration through Celite and evaporation of the solvent, the residue was purified by chromatography with $CH_2Cl_2/MeOH$ (20:1, v/v) to yield 180 mg (65%) of the amide 27: $[\alpha]^{32}_{D} = 17.4^{\circ}$ (c = 0.93, CH_2Cl_2); ¹H NMR (CDCl₃, 400 MHz) δ 4.08 (ddd, $J_1 = 4.6$ Hz, $J_2 = 6.5$ Hz, $J_3 = 8.5$ Hz, 1 H, 2-H_a), 3.6 (ddd, $J_1 = 3.4$ Hz, $J_2 = 3.6$ Hz, $J_3 = 3.9$ Hz, $J_4 = 7.4$ Hz, 1 H, 2-H_b), 2.58 (ddd, $J_1 = 3.1$ Hz, $J_2 = 9.1$ Hz, $J_3 = 13.0$ Hz, 1 H, 2-H_b), 2.3 (m, 2 H), 2.2 (m, 2-H), 1.8 (m, 1 H), 1.6 (m, 1 H), 1.5 (m, 2 H), 1.3-1.1 (m, 3 H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 174.3 (C=O), 57.2 (C-6), 40.2 (C-2), 33.5 (CH₂), 30.2, 25.3, 24.4, 23.6 (CH₂). Anal. Calcd for C₈H₁₃NO: C, 69.03; H, 9.41; N, 10.06. Found: C, 68.87; H, 9.63; N, 9.68.

(6*R*)-Indolizidine [(*R*)- δ -Coniceine, 28]. To a solution of 120 mg (2.5 mmol) of LiAlH₄ in 10 mL of ether was added a solution of 120 mg (0.86 mmol) of amide 27 in ether, and the mixture was heated at reflux overnight. The reaction mixture was poured onto 10 g of ice, and the aqueous phase was extracted three times with CH₂Cl₂. The combined organic phases were dried with MgSO₄ and evaporated to dryness in vacuo to yield 64.7 mg (61%) of (6*R*)-indolizidine 28: $[\alpha]^{23}{}_{\rm D} = -7.9^{\circ}$ (c = 0.15, EtOH) [lit.²⁰ [α]²³ $_{\rm D} = 10.2^{\circ}$ (c = 1.76, EtOH)]; ¹³C NMR (CDCl₃, 100.6 MHz) δ 64.4 (C-6), 54.3 (C-2), 53.1 (C-9), 31.0 (CH₂), 29.7, 25.5, 24.6, 20.6 (CH₂).

Acknowledgment. This research was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the DEGUSSA AG.