the mirture was filtered. The filtrate was cooled to $0^{\circ} \mathrm{C}$, and $10 \% \mathrm{Pd} / \mathrm{C}$ was added. The mixture was then shaken under H_{2} (40 psi) for 3 h at rt . Filtration of the mixture and concentration of the filtrate gave the pure amino amide $20(0.085 \mathrm{~g}, 98 \%)$: mp $202{ }^{\circ} \mathrm{C}$ dec; $[\alpha]^{20} \mathrm{D}-20.4^{\circ}$ ($\mathrm{c} 1, \mathrm{H}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$, int. std. 4.78 $\mathrm{ppm}) \delta 0.92,0.93(2 \mathrm{~d}, 6 \mathrm{H}), 1.35-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.64(\mathrm{~m}, 1$ $\mathrm{H}), 1.68-1.80(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{AB}, J=10.50 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{AB}$, $J=3.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.4 (ddd, $J=3.06,7.14,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.0-4.10 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{D}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{OH}$ int. std. 48.98 ppm) $\delta 21.01,22.10,23.93,38.50,41.42,53.97,68.27,178.72$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 49.98 ; \mathrm{H}, 10.49 ; \mathrm{N}, 14.57$. Found: C, 49.83; H, 10.49; N, 14.37.
(3R,4S)-4-Amino-3-hydroxy-6-methylheptanamide (21). Similar treatment of $17(0.1 \mathrm{~g}, 0.5 \mathrm{mmol})$ gave $21(0.083 \mathrm{~g}, 96 \%)$: $\mathrm{mp} 203{ }^{\circ} \mathrm{C}$ dec; $[\alpha]^{20} \mathrm{D}-18.1^{\circ}$ (c 1, $\mathrm{H}_{2} \mathrm{O}$).
(3R,4R)-4-Amino-3-hydroxy-6-methylheptanamide (22). Treatment of 18 ($0.1 \mathrm{~g}, 0.5 \mathrm{mmol}$) in a similar manner gave 22 ($0.080 \mathrm{~g}, 92 \%$): $[\alpha]^{20} \mathrm{D}+19^{\circ}\left(c 1, \mathrm{H}_{2} \mathrm{O}\right)$.
(3S,4R)-4-Amino-3-hydroxy-6-methylheptanamide (23). Similar treatment of $19(0.1 \mathrm{~g}, 0.5 \mathrm{mmol})$ gave $23(0.086 \mathrm{~g}, 99 \%)$: $[\alpha]^{20}{ }_{\mathrm{D}}+18.3^{\circ}\left(c \mathrm{l}, \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O}$ int. std. 4.78 ppm$) \delta 0.91$ ($2 \mathrm{~d}, 6 \mathrm{H}$), 1.35-1.70 (m, 3 H), 2.4-2.66 (m, 2 H), 3.37-3.48 (m, 1 H), 4.24-4.38 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{DCl} 0.2 \mathrm{~N}, \mathrm{CH}_{3} \mathrm{OH}$ int. std. $48.95 \mathrm{ppm}) \delta 17.47,18.33,20.34,34.66,38.06,58.01,67.85,175.54$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 0.6 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 51.92 ; \mathrm{H}, 10.46 ; \mathrm{N}, 15.14$. Found: C, 51.63; H, 10.42; N, 14.78 .

Acknowledgment. We thank the Association pour la Recherche contre le Cancer (A.R.C.) for financial support.

Supplementary Material Available: ${ }^{13} \mathrm{C}$ NMR spectra for compounds $1,2,5,7,8,11,12,15,16,19,20$, and 23 (12 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

Asymmetric Tandem Mannich-Michael Reactions of Amino Acid Ester Imines with Danishefsky's Diene

H. Waldmann* and M. Braun
Universität Bonn, Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Str. 1, D-5300 Bonn, Germany

Received December 3, 1991 (Revised Manuscript Received May 14, 1992)

Abstract

Imines 1 derived from aromatic, aliphatic, and functionalized aldehydes and various amino acid esters react with Danishefsky's diene under Lewis acid catalysis via a tandem Mannich-Michael mechanism to give cyclic 6 -substituted 2,3 -didehydro-4-piperidinones in good to high yields and with diastereomeric ratios reaching from 92:8 up to 97:3. The chiral auxiliary is removed by conversion of the $\alpha \mathrm{C}$ atom of the amino acid into an acetalic center, employing a Curtius reaction as the key step. For the elucidation of the absolute configuration, the alkaloids (S)-coniine and $(R)-\delta$-coniceine are synthesized from the enaminones $5 \mathbf{i}$ and $\mathbf{5 r}$.

Introduction

Reactions of compounds containing $\mathrm{C}-\mathrm{N}$ double bonds with dienes to give six-membered azaheterocycles open up a wide variety of opportunities for organic synthesis, in particular for the construction of alkaloids and analogues thereof. ${ }^{1}$ The widespread use of these methods has for a long time been hampered by the low reactivity of easily accessible and common unactivated imines, making the application of activated Schiff bases necessary, which carry electron-withdrawing substituents, e.g. CF_{3}, acyl, and tosyl groups. However, recently Danishefsky et al. ${ }^{2 a-c}$ demonstrated that unactivated aromatic and aliphatic imines react smoothly with electron-rich dienes like 2 (Danishefsky's diene) in the presence of ZnCl_{2}. The mechanism of this conversion is a matter of debate and may vary with the structure of the heteroanalogous carbonyl compound employed. Whereas Danishefsky et al. seem to favor a

[^0]Diels-Alder type process, Kunz et al. ${ }^{3}$ have substantiated that alternatively a Lewis acid induced addition of the silyl enol ether moiety of 2 followed by a cyclization via nucleophilic intramolecular attack of the amine generated, may occur. The principle has subsequently been applied by several groups for the construction of various heterocyclic frameworks and natural products. ${ }^{2,3}$ Despite the great potential of this synthetic method, only isolated efforts have thus far been made to carry out corresponding transformations asymmetrically using removable chiral auxiliary groups, i.e. only a carbohydrate derived amine has been applied for the steric steering of reactions between the diene 2 and respective imines. ${ }^{3}$

In this paper we report on the use of the easily accessible amino acid esters as mediators of chirality in the reaction of unactivated imines with Danishefsky's diene 2.5 These esters have already been used as effective chiral auxiliaries

[^1]Table I. Synthesis of 2,3-Didehydropiperidin-4-ones with Varying Aldehydes

entry	no.	R^{1}	amino acid	temp (${ }^{\circ} \mathrm{C}$)	Lewis acid/solvent	yield (\%)	5:6
1	5a	phenyl	Phg-OMe	0	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	25	60:40
2	5b	p-methoxy-Ph	Phg-OMe	-20	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	63	67:33
3	5c	p-nitro-Ph	Phg-OMe	0	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	53	62:38
4	5d	n-prop	Phg-OMe	0	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	69	71:29
5	5	phenyl	Val-OMe	-20	$\mathrm{ZnCl}_{2} /$ THF	45	92:8
6	5 f	p-methoxy-Ph	Val-OMe	0	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	54	92:8
7	5 g	p-nitro-Ph	Val-OMe	0	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	65	94:6
8	51	p-nitro- Ph	Ile-OMe	-10	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	57	93:7
9	5 m	p-nitro-Ph	Ile-OBzl	-10	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	60	93:7
10	5n	p-methoxy-Ph	Ile-OMe	-10	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	56	91:9
11	$5 i$	n-prop	Ile-OMe	0	2 equiv of $\mathrm{ZnCl}_{2} /$ THF	11	15:85
12	50	i-prop	lle -OMe	-78 to -20	$\mathrm{EtAlCl} 2 / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	48	97:3
13	50	i-prop	Ile-OMe	-78 to -20	$\mathrm{Me}_{2} \mathrm{AlCl} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	93:7
14	5p	n-bu	Ile-OMe	-78 to -20	$\mathrm{Me} 2 \mathrm{AlCl} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	77	90:10
15	59	$\mathrm{MeOOC}\left(\mathrm{CH}_{2}\right)_{3}$	Val-OBzl	-78 to -20	$\mathrm{EtAlCl} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	46	93:7
16	5 r	$\mathrm{EtOOC}\left(\mathrm{CH}_{2}\right)_{2}$	Val-OBzl	-78 to -20	$\mathrm{EtAlCl} 2 / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	93:7
17	58		Ile-OMe	-78 to -20	EtAlCl $2 / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	75	93:7
18	5 t	n-prop	Phe-OMe	-10	$\mathbf{Z n C l} \mathbf{2}^{\prime} / \mathrm{THF}$	65	66:34

in asymmetric hetero-Diels-Alder reactions, ${ }^{4}$ carbo-Diels-Alder reactions, ${ }^{6}$ 1,3-dipolar cycloadditions, ${ }^{7}$ radical additions to carbonyl groups, ${ }^{8}$ and a variety of further reactions. ${ }^{9}$

Results and Discussion

The Danishefsky diene 2 reacts with amino acid ester imines 1 in the presence of 1 equiv of a Lewis acid to deliver the enaminones 5 and 6 in high yield and, depending on the structure of the amino acid used, with good to excellent stereoselectivity (Scheme I, Tables I and II). The diastereomeric ratios can be determined directly from the crude reaction mixtures by analytical HPLC. The major diastereomers 5 are conveniently isolated by flash chromatography. Their absolute configurations were determined by conversion of $5 i$ and $5 \mathbf{r}$ into the naturally occurring alkaloids (S)-coniine and (R)- δ-coniceine (vide infra). In neither case could an intermediate 3 be detected, which according to Danishefsky et al., ${ }^{2}$ would result from a Diels-Alder process, neither was an intermediate 4 isolated, which according to observations of Kunz et al., ${ }^{3}$ would result from a stepwise tandem Mannich-Michael process. However, in the synthesis of $5 \mathrm{~h} / 6 \mathrm{~h}$ using ZnCl_{2} as catalyst, the vinylogous amide 7 was formed in 26% yield as a byproduct. This compound must have been formed by nucleophilic attack of free amino acid ester, which was present in the reaction mixture probably because of incomplete formation of the imine at the Mannich base intermediate 4. To confirm this assumption and to rule out the possibility of an alternative reaction of the ester with the final enaminones $5 \mathrm{~h} / 6 \mathrm{~h}$, the free amino acid ester was treated with 5 h and ZnCl_{2} under identical conditions and finally at reflux temperature. However, formation of 7 could not be detected. From these results a definite proof of the course of the reaction cannot be obtained, but the occurrence of 7 suggests that most probably the tandem Mannich-Michael sequence is followed if amino acid ester imines are used as electrophiles.

The application of phenylglycine and phenylalanine as chiral auxiliaries resulted in only low diastereomeric ratios

[^2]Scheme I

5

7
(Table I, entries 1-4 and 18). In addition, the Schiff bases of phenylglycine are prone to racemization. ${ }^{10}$ This was confirmed by treating the benzaldimine of phenylglycine methyl ester with ZnCl_{2} under the respective reaction conditions, reisolation of the amino acid ester, and comparison of its specific rotation ($-40^{\circ}, c=1.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) with the value obtained for a reference sample ($-128^{\circ}, c=1.1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). However, imines derived from valine and isoleucine esters yielded the enaminones with uniformly high diastereomeric excess. The size of the ester moiety remarkably seems only to be of subordinate influence on the diastereomeric ratio, as there is no significant difference between amino acid methyl and benzyl esters (Table II, entries 1 and 2). Electronic effects, too, seemingly play no important role in this process since aldehydes bearing

[^3]Table II. Variation of Lewis Acid

entry	no.	R^{1}	amino acid	temp (${ }^{\circ} \mathrm{C}$)	Lewis acid/solvent	yield (\%)	5:6
1	5h	n-prop	Ile-OBzl	0	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	65	90:10
2	5 i	n-prop	$\mathrm{Ile-OMe}$	-15	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	50	90:10
3	5 i	n-prop	Ile-OMe	-78 to -20	$\mathrm{TiCl}_{4} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	37	91:9
4	5 i	n-prop	$\mathrm{Ile}-\mathrm{OMe}$	-78 to -20	EtAlCl $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	80	94:6
5	5 i	n-prop	Ile-OMe	-78 to -20	$\mathrm{Et}_{2} \mathrm{AlCl} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	80	92:8
6	5 i	n-prop	Ile-OMe	-78 to -20	$\mathrm{MeAlCl} 2 / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	74	93:7
7	51	n-prop	Ile-OMe	-78 to -20	$\mathrm{Me} 2 \mathrm{AlCl} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	80	93:7
8	5 i	n-prop	$\mathrm{Ile}-\mathrm{OMe}$	-78 to -20	$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	64	80:20
9	5k	phenyl	$\mathrm{Ile-OMe}$	-15	$\mathrm{ZnCl}_{2} / \mathrm{THF}$	62	92:8
10	5k	phenyl	$\mathrm{Ile}-\mathrm{OMe}$	-78 to -20	$\mathrm{EtAlCl} 2 / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	21	95:5
11	5k	phenyl	$\mathrm{Ile}-\mathrm{OMe}$	-78 to -20	$\mathrm{Et}_{2} \mathrm{AlCl} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	28	89:11

electron-withdrawing or -donating groups deliver nearly the same results (Table I, entries 5-7). In the reaction sequence shown in Scheme I, derivatives of differently substituted aromatic, aliphatic, and functionalized aldehydes can be used. With Schiff bases of aliphatic aldehydes, the best results are obtained if aluminum compounds are added as catalysts at low temperature and dichloromethane is employed as solvent (Table II). On the other hand, for imines of aromatic aldehydes the best catalyst system is ZnCl_{2} in THF at $0^{\circ} \mathrm{C}$ to $-20^{\circ} \mathrm{C}$. However, TiCl_{4} and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ may also be used (Table II, entries 3 and 8). These results markedly differ from earlier observations ${ }^{2,3}$ that only upon treatment with ZnCl_{2} in THF the diene 2 reacts with imines to give the desired products in high yields and/or stereoselectivities.

A further surprising result is the fact that the sense of the stereoselection is identical for both the chelating Lewis acids (ZnCl_{2} and TiCl_{4}, Table II, entries 2, 3, and 9) as well as for the catalysts which are usually only capable of tetracoordination ($\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, and aluminum Lewis acids, Table II, entries 4-8, 10, and 11).

In analogy to observations obtained for aza-Diels-Alder reactions with amino acid ester imines in aqueous and in organic solution, ${ }^{4}$ (S)-phenylethylamine is less efficient as a chiral mediator in the Mannich-Michael reactions presented here than the valine and isoleucine esters. The Schiff base obtained from this chiral amine and butyraldehyde gave the respective enaminones with a diastereomeric ratio of 75:25 (the absolute configuration of the predominating diastereomer was not determined), whereas the isoleucine methyl ester delivers the corresponding vinylogous amides $5 \mathbf{i}$ and $\mathbf{6 i}$ in a ratio of $93: 7$. Also phenylethylamine could not be removed from the heterocycles by hydrogenation.

To rationalize the steric course of the tandem Man-nich-Michael reactions and to account for the lacking reversal of the stereochemistry upon switching from a chelating to a nonchelating catalyst, we propose the working model illustrated in Scheme II. The nonchelating boron and aluminum Lewis acids most probably coordinate to the imine nitrogen. The amino acid ester then adopts a conformation 8 in which, by analogy to the Felkin-Anh model ${ }^{11}$ for nucleophilic additions to carbonyl groups, the $\alpha \mathrm{C}-\mathrm{COOR}$ bond is oriented perpendicular to the $\mathrm{C}-\mathrm{N}$ double bond, resulting in a parallel arrangement and thus an overlap of the respective σ^{*} and π^{*} orbitals (see Scheme II). The attack of the diene then should preferably occur from the re side. According to this model, the chelating Lewis acids ZnCl_{2} and TiCl_{4}, which can additionally coordinate the ester carbonyl group, are expected to reverse the direction of the induction. However, NMR spectroscopic investigations indicate that, in the presence of these Lewis acids, the imine double bond isomerizes under the

Scheme II

reaction conditions $\left(\mathrm{ZnCl}_{2}: 0^{\circ} \mathrm{C}\right.$ to $-20^{\circ} \mathrm{C}$; TiCl_{4} : warming from $-78^{\circ} \mathrm{C}$ to rt), as previously observed by Ojima et al. ${ }^{12}$ for TiCl_{4}-mediated [$2+2$]-cycloadditions between amino acid ester imines and ketene silyl acetals. Thus, the ${ }^{1} \mathrm{H}-$ NMR spectrum of a solution of valine methyl ester butyraldimine and 1 equiv of ZnCl_{2} in THF- d_{8} shows two sets of signals for the aldimine proton, and for the amino acid $\alpha \mathrm{H}$, with nearly equal chemical shifts, which differ from the shifts obtained from the uncomplexed imine (0.4 and 1.7 ppm , respectively). The occurrence of these signals (ratio 1:4) points to an equilibrium between cis and trans imine from which the cis imine 9 seems to react faster. It is again attacked preferentially from the $r e$ side and, therefore, also delivers the diastereomer 5 in excess.
The assumption that ZnCl_{2} is chelated by the amino acid ester imines is supported by the observation that with 2 equiv of this Lewis acid the sense of the asymmetric induction is reversed (Table I, entry 11; Table II, entry 2).

Scheme III

$11 a, b$
31: $R^{1}=$ n-propyl, $R^{2}=$ methyl
Sr: $\mathrm{A}^{1}=\left(\mathrm{CH}_{2}\right)_{2} \operatorname{COOEt}, \mathrm{~F}^{2}=$ bonzy

1sa,b
15a: $R=n$-propyl, overall yied 80%
15b: $R=\left(\mathrm{CH}_{2}\right)_{2}$-COOE1, overall yield 50%
This result can be understood by the formation of a complex 10 in which both the imine and the ester carbonyl group are complexed by a ZnCl_{2} so that the chelation is broken. The working hypothesis illustrated in Scheme II is, in addition, strengthened by findings made for the reaction of tryptophan methyl ester-derived Schiff bases with Danishefsky's diene. ${ }^{13}$ In these cases, too, the outcome of the tandem reactions can be rationalized by the intermediate formation of a nonchelated complex analogous to 10. It is interesting to note that in contrast to the reaction of the imines 1 with the diene 2 the similar transformations with the so-called Brassards diene ($\mathrm{CH}_{2}=\mathrm{CH}\left(\mathrm{OCH}_{3}\right)$ $\mathrm{CH}=\mathrm{C}\left(\mathrm{OCH}_{3}, \mathrm{O}\left(\mathrm{SiCH}_{3}\right)_{3}\right)$ proceed via different steric courses and, probably, as a Diels-Alder process. We have discussed the differences between the reactions of the Schiff bases 1 with these electron-rich siloxy dienes in detail elsewhere. ${ }^{40}$
To cleave the chiral auxiliary from the enaminones 5 , the chemically stable bond between the α carbon of the amino acid and the nitrogen has to be broken. This goal was achieved by making use of a strategy developed by us, ${ }^{4 e, 5}$ which consists in the conversion of the amino acid $\alpha \mathrm{C}$ atom into an easily hydrolyzable acetalic center (Scheme III). For this purpose a Curtius rearrangement served as the key step. The application of a Hofmann degradation by means of a hypervalent iodine compound ${ }^{14}$ or of a Lossen ${ }^{15}$ rearrangement gave inferior results. To achieve the desired degradation, the methyl ester $5 i$ and the benzyl ester $5 \mathbf{r}$ were first converted to the carboxylic acids 11a and 11b by alkaline saponification of the methyl ester and hydrogenation of the benzyl ester, respectively. Treatment of the liberated carboxylic acids with diphenyl phosphorazidate ${ }^{16}$ either at $80^{\circ} \mathrm{C}$ for 12 h or at $40^{\circ} \mathrm{C}$ for 72 h resulted in the formation of the carboxylic acid azides 12a and 12b, which underwent smoothly Curtius rearrangements to yield the isocyanates 13a and 13b. These rearrangement products were trapped as the urethanes 14a and 14 b by added benzyl alcohol. Finally, hydrogenolysis and subsequent chromatography delivered the free enaminones $15 a$ and $15 b$ in overall yields of $50-80 \%$. The yield is higher if the rearrangement is carried out at $40^{\circ} \mathrm{C}$.

[^4] 1991, 881.
(14) Loudon, M.; Radhakrishna, A.; Almond, M.; Blodgett, J.; Boutin, R. J. Org. Chem. 1989, 49, 401.
(15) Hoare, D. G.; Olson, A.; Koshland, D. E., Jr. J. Am. Chem. Soc. 1968, $90,1638$.
(16) Yamada, S.; Shioiri, T. Tetrahedron 1976, 30, 2151.

Scheme IV

15a
18
If desired, the carboxylic acids $11 \mathrm{a}, \mathrm{b}$ and the acylated acetals 14 a and 14 b may be isolated and characterized, but for preparative purposes it is more convenient to run the whole reaction sequence as a one-pot procedure without diminishing the overall yield. It should be noted that the final hydrogenolysis is faster if the phosphoric acid ester and the added tertiary amine are first removed by extraction.

An alternative route to the desired vinylogous amides 15 consists in the oxidation of the amino acid ester enolates, e.g. 16, with the sulfonyloxaziridine 17, introduced by Davis ${ }^{17}$ (Scheme IV). Unfortunately, from 5i the enaminone 15a could only be obtained in 30% yield by this one-step procedure. A competitive oxidation at C-5 of the heterocycle was not observed. Attempts to remove the amino acid ester via oxidation with lead tetraacetate ${ }^{18}$ were not successful.

Enaminones like 15 a and 15 b are versatile intermediates for the construction of different alkaloids. ${ }^{3,9,13,19}$ To elucidate the absolute configuration of the vinylogous amides obtained from the tandem Mannich-Michael reactions, $5 \mathbf{r}$ was converted into the indolizidine alkaloid (R) - δ-coniceine 28, and 5i was transformed into the alkaloid (S)-coniine 22 (Scheme V). To this end, the enaminone 15a obtained from 5i as shown in Scheme III first was acylated to yield the urethane 19 which was then chemoselectively reduced with L-Selectride (Aldrich) to the ketone 20 according to the procedure described by Kunz et al. ${ }^{3}$ The acylation of the amide function proved to be necessary to effect the desired reduction of the double bond; the direct reduction of the free enaminone $15 a$ was not successful. Finally, after thioketalization, treatment of the acetal 21 with Raney nickel at $80^{\circ} \mathrm{C}$ resulted in the simultaneous desulfurization and the removal of the Z protecting group from 21 and yielded (\mathbf{S})-coniine which was isolated as the hydrochloride 22. Similarly, the piperidinone 15 b obtained from 5 r was cyclized to the lactam 23 by heating in benzene in the presence of DBU, and subsequently the double bond was

[^5]
Scheme V

ethanov $\Delta 65 \%$

28
the removal of the auxiliary can easily be tolerated.

Experimental Section

The analytical instruments and general experimental techniques used have already been described elsewhere. ${ }^{4 o, f, 6,7}$ A 1 M solution of zinc chloride was prepared by dissolving 13.6 g of anhydrous zinc chloride in 50 mL of THF and, after cooling to room temperature, adding $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to a total volume of 100 mL .

General Protocol for the Preparation of the Imines 1. To a solution of 1 mmol of the free amino acid ester in 10 mL of ether or petroleum ether was added 1 mL of the corresponding aldehyde rapidly in one portion. The solution was stirred for $15-20 \mathrm{~min}$, it was then dried with MgSO_{4}, and the solvent was removed in vacuo. The resulting imines 1 were directly used in the subsequent reactions without further purification.

General Protocol for the Synthesis of the 2,3-Didehydropiperidinones 5 and 6. (1) Using ZnCl_{2}. To a solution of 1 mmol of the respective imine in 10 mL of THF (at 0 to -15 ${ }^{\circ} \mathrm{C}$) was added 1 equiv of the Lewis acid (1 M solution in THF/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) slowly within 2 min via syringe. The mixture was stirred for 5 min , and then 1.3 equiv of the diene 2 was added during 7 h by a motor-driven syringe to minimize any undesired polymerization of the diene.
(2) Using Aluminum Lewis Acids. A 0.1 M solution of the respective imine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was cooled to $-78{ }^{\circ} \mathrm{C}, 1$ equiv of the corresponding Lewis acid was added, and the diene was added in one portion. The cooling bath was removed, and the reaction mixture was allowed to warm to rt over 1 h , after which time the reaction misture turned a deep red or black.
For workup in both cases the solution was poured into saturated aqueous NaHCO_{3} and extracted twice with 100 mL of ether, followed by one extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4}, and the solvent was evaporated in vacuo. The resulting dark-colored oil was subjected to flash chromatography using petroleum ether/acetone mixtures (5-6:1) to yield the enaminones 5 as yellowish oils.
According to the procedure described above, the following 2,3-didehydropiperidinones were prepared.
$\boldsymbol{N}-[(\boldsymbol{R})$-(Methoxycarbonyl)benzyl]-(6S)-2,3-didehydro-6-phenylpiperidin-4-one (5a): $[\alpha]^{23} \mathrm{D}=0.45^{\circ}\left(c=0.93, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.5(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 6.9\left(\mathrm{~d}, J_{2 \cdot \mathrm{H}, 3-\mathrm{H}}\right.$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 5.03(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.63$ (dd, $\left.J_{6-\mathrm{H}, 5-\mathrm{Ha}}=5.7 \mathrm{~Hz}, J_{6-\mathrm{H}, 5-\mathrm{Hb}}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 3.7(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $2.84\left(\mathrm{dd}, J_{5-\mathrm{Ha},-\mathrm{Hb}}=15.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.76$ (dd, 1 H , $5-\mathrm{H}_{\mathrm{b}}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 100.6 MHz) $\delta 190.9$ ($\mathrm{C}-4$), 171.4 ($\mathrm{C}=0$), 151.5 (C-2), 138.4 (C-ipso), 133.7 (C-ipso), 129.3, 129.1, 129.0, 128.9, $128.83,128.7,127.2$ ($7 \mathrm{C}, \mathrm{Ph}$), $101.0(\mathrm{C}-3), 65.6(\mathrm{C}-\alpha), 63.1\left(\mathrm{OCH}_{3}\right)$, 52.4 (C-6), 47.37 (C-5). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C} 74.74 ; \mathrm{H}$ 5.95; N 4.35. Found: C, 75.05; H, 5.73; N, 4.68.
\boldsymbol{N}-[(R)-(Methoxycarbonyl)benzyl]-(6S)-2,3-didehydro-6-(4-methoxyphenyl)piperidin-4-one (5b): $[\alpha]^{23} \mathrm{D}=-51^{\circ}(c=$ $1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.5(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}, 2-\mathrm{H})$, $6.9(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ph}), 5.03\left(\mathrm{~d}, J_{3 \cdot \mathrm{H}, 2 \mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 4.85(\mathrm{~s}, 1$ $\mathrm{H}, \alpha-\mathrm{H}), 4.55\left(\mathrm{dd}, J_{6-\mathrm{H}, 5-\mathrm{Ha}}=5.3 \mathrm{~Hz}, J_{6 \mathrm{H}, 6-\mathrm{Hb}}=13.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right)$, $3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.80\left(\mathrm{dd}, J_{5-\mathrm{Ha}, 5-\mathrm{Hb}}=16.4\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.65\left(\mathrm{dd}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ $\delta 191.2$ (C-4), 170.3 ($\mathrm{C}=0$), 159.8 (C-ipso), 151.6 (C-2), 133.7 (C-ipso), $130.1-129(5 \mathrm{C}, \mathrm{Ph}), 100.9(\mathrm{C}-3), 65.2(\mathrm{C}-\alpha), 63.1\left(\mathrm{OCH}_{3}\right)$, 55.1 (C-6), 47.7 (C-5). Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{C}, 71.57$; H , 6.02 ; N, 3.99. Found: C, $71.69 ; \mathrm{H}, 5.95 ; \mathrm{N}, 3.95$.
$\boldsymbol{N}-[(R)$-(Methoxycarbonyl)benzyl]-(6S)-2,3-didehydro-6-(4-nitrophenyl)piperidin-4-one (5c): $[\alpha]^{23}{ }_{\mathrm{D}}=166.8^{\circ}(c=1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.28(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ph}), 7.9$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.5-7.39(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.97(\mathrm{~d}$, $\left.J_{2-\mathrm{H}, 3-\mathrm{H}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 5.10(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}, \alpha-\mathrm{H})$, $4.70\left(\mathrm{dd}, J_{6-\mathrm{H}, 5-\mathrm{Ha}}=9.2 \mathrm{~Hz}, J_{6-\mathrm{H}, 5-\mathrm{Hb}}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 3.77(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $2.93\left(\mathrm{dd}, 1 \mathrm{H}, J_{5-\mathrm{Ha}, 5-\mathrm{Hb}}=16.4 \mathrm{~Hz}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.70(\mathrm{dd}$, $1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 189.5(\mathrm{C}-4), 170.2$ ($\mathrm{C}=0$), 150.7 (C-2), 148.1 (C-ipso), 145.9 ($p-\mathrm{C}, \mathrm{PhNO}_{2}$), 132.8 (C-ipso), 129-126 (5 C, Ph), 101.6 (C-3), 66.8 (C- α), $62.6\left(\mathrm{OCH}_{3}\right.$), 52.8 (C-6), 43.6 (C-5). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{3}: \mathrm{C}, 65.57 ; \mathrm{H}$, 4.95; N, 7.65. Found: C, 65.49 ; $\mathrm{H}, 5.01 ; \mathrm{N}, 7.34$.
$\boldsymbol{N}-[(\boldsymbol{R})$-(Methoxycarbonyl)benzyl]-(6R)-2,3-didehydro6 -n-propylpiperidin-4-one (5d): $[\alpha]^{23} \mathrm{D}=-8.1^{\circ}(c=0.95$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.3(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.55(\mathrm{~d}$,
$\left.J_{2 . \mathrm{H}, 3 \mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 5.07(\mathrm{~s}, 1 \mathrm{H}, \alpha-\mathrm{H}), 4.77(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H})$, $3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.4(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.84\left(\mathrm{dd}, J_{5-\mathrm{He}, \mathrm{b}-\mathrm{Hb}}=15.1\right.$ $\mathrm{Hz}, J_{6-\mathrm{H}, \mathrm{G}, \mathrm{H}_{\mathrm{a}}}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}$), 2.76 (dd, $1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$), 1.7 (m, $1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{a}}$), $1.67\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{b}}\right), 1.36\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}_{\mathrm{a}}\right), 1.26(\mathrm{~m}, 1$ $\left.\mathrm{H}, 8-\mathrm{H}_{\mathrm{b}}\right), 0.9\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100.6$ MHz) $\delta 191.2$ (C-4), 170.9 ($\mathrm{C}=0$), 148.9 (C-2), 132.6 (C-ipso), 129.3, 129.0, 128.4 ($3 \mathrm{C}, \mathrm{Ph}$), 98.6 ($\mathrm{C}-3$), 67.6 ($\mathrm{C}-\alpha$), $58.1\left(\mathrm{OCH}_{3}\right), 52.4$ (C-6), 39.2 (C-2), 31.6 (C-7), 18.7 (C-8), 14.0 (C-9). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}, 71.06 ; \mathrm{H}, 7.37 ; \mathrm{N}, 4.84$. Found: $\mathrm{C}, 70.89 ; \mathrm{H}$, 7.13; N, 4.73.
\boldsymbol{N}-[(S)-1-(Methoxycarbonyl)-2-methylpropyl]-(6R)-2,3-didehydro-6-phenylpiperidin-4-one (5e): $[\alpha]{ }^{23} \mathrm{D}=-22.4^{\circ}(\mathrm{c}$ $\left.=1.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.24(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}$, $2-\mathrm{H}), 5.17\left(\mathrm{~d}, J_{3-\mathrm{H}, 2 \mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 4.46\left(\mathrm{dd}, J_{6-\mathrm{H}, 6 \mathrm{Ha}}=5.8\right.$ $\left.\mathrm{Hz}, J_{6-\mathrm{H}, 5 \mathrm{Hb}}=11.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.10(\mathrm{~d}$, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}), 2.76\left(\mathrm{dd}, J_{5-\mathrm{Ha}, \mathrm{Hb}}=14.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right)$, 2.64 (dd, $1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$), 2.16 ($\mathrm{m}, 1 \mathrm{H}, \beta-\mathrm{H}$), 0.9 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 0.75\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 190.8$ (C-4), 171.8 ($\mathrm{C}=0$), 151.7 (C-2), 138.3 (C-ipso), 128.8, 128.4, 127.8 $(\mathrm{Ph}), 101.2(\mathrm{C}-3), 68.6(\mathrm{C}-\alpha), 62.9\left(\mathrm{OCH}_{3}\right), 51.8(\mathrm{C}-6), 44.3(\mathrm{C}-5)$, $28.4(\mathrm{C}-\beta), 19.2,19.1\left(2 \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}: \mathrm{C}$, 71.06; H, 7.33; N, 4.87. Found: C, 71.07; H, 7.53; N, 4.87 .
\boldsymbol{N}-[(S)-1-(Methoxycarbonyl)-2-methylpropyl]-(6R)-2,3-didehydro-6-(4-methoxyphenyl) piperidin-4-one (5f): $[\alpha]^{23} \mathrm{D}$ $=7.8^{\circ}\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.24(\mathrm{~d}$, $\left.J_{2 . \mathrm{H}, 3 \mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 7.16(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 6.83$ (d, $2 \mathrm{H}, \mathrm{Ph}$), $5.13(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 4.39\left(\mathrm{dd}, J_{6 \mathrm{H},-\mathrm{Ha}}=5.5 \mathrm{~Hz}, J_{6-\mathrm{H}, \mathrm{Hb}}\right.$ $=12.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.75\left(\mathrm{~s}, 3 \mathrm{H}, 0 \mathrm{CH}_{3}\right), 3.58\left(\mathrm{~s}, 3 \mathrm{H}, 0 \mathrm{CH}_{3}\right)$, $3.10(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}), 2.74\left(\mathrm{dd}, J_{5-\mathrm{Ha}, 5-\mathrm{Hb}}=16.4 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}$), 2.58 (dd, $1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$), 2.13 ($\mathrm{m}, 1 \mathrm{H}, \beta-\mathrm{H}$), 0.86 (d, $J=$ $\left.6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.75\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100.6$ MHz) $\delta 191.1$ (C-4), 170.8 (C=0), 151.7 (C-ipso), 150.9 (C-2), 130.1 ($p-\mathrm{C}, \mathrm{PhOCH}_{3}$), 128.8 (2 C, Ph), 114.2 (2 C, Ph), 101.2 (C-3), 67.9 $(\mathrm{C}-\alpha), 62.6\left(\mathrm{OCH}_{3}\right), 55.1\left(\mathrm{OCH}_{3}\right), 51.8(\mathrm{C}-6), 44.4(\mathrm{C}-5), 28.2(\mathrm{C}-\beta)$, 19.1, $19.0\left(2 \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4}: \mathrm{C}, 65.24 ; \mathrm{H}, 6.99$; N, 4.23. Found: C, 65.02; H, 6.64; N, 4.11.
\boldsymbol{N}-[(S)-1-(Methoxycarbonyl)-2-methylpropyl]-(6R)-2,3-didehydro-6-(4-nitrophenyl) piperidin-4-one (5 g): $[\alpha]^{23}{ }_{\mathrm{D}}=4.8^{\circ}$ ($c=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.09(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ph}$), $7.40(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}), 7.23\left(\mathrm{~d}, J_{2-\mathrm{H}, 3 \mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $2-\mathrm{H}), 5.07(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 4.63$ (dd, $J_{6-\mathrm{H}, 6-\mathrm{Ha}}=6.5 \mathrm{~Hz}, J_{6-\mathrm{H}, 6 \mathrm{Hb}}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.09(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\alpha-\mathrm{H}), 2.72\left(\mathrm{dd}, J_{5-\mathrm{Ha},-\mathrm{Hb}}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.54\left(\mathrm{dd}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right)$, $2.17(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 0.87\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.75(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 189.0(\mathrm{C}-4), 169.8(\mathrm{C}=0)$, 151.0 (C-2), 147.5 (C-ipso), 145.8 (p-C, PhNO_{2}), 127.1 ($2 \mathrm{C}, \mathrm{Ph}$), $124.3(2 \mathrm{C}, \mathrm{Ph}), 101.2(\mathrm{C}-3), 70.1(\mathrm{C}-\alpha), 60.3\left(\mathrm{OCH}_{3}\right), 51.7(\mathrm{C}-6)$, 43.2 (C-5), 28.1 (C- β), 18.9, $18.8\left(2 \mathrm{CH}_{3}\right.$). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 61.47; H, 5.88; N, 8.45. Found: C, 61.34; H, 6.07; N, 8.54 .
\boldsymbol{N}-[(S)-1-(Benzyloxycarbonyl)-(S)-2-methylbutyl]-(6S)-2,3-didehydro-6-n-propylpiperidin-4-one (5h): $[\alpha]_{\mathrm{D}}^{23}=$ $-120.7^{\circ}\left(c=1.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.3(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ph}), 6.99\left(\mathrm{~d}, J_{2 \cdot \mathrm{H}, 3 \mathrm{H}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 5.15(\mathrm{~s}, 2 \mathrm{H}$, ${ }^{0} \mathrm{CH}_{2} \mathrm{Ph}$), $4.95(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 3.40(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, \alpha-\mathrm{H}), 2.45$ (dd, $\left.J_{5-\mathrm{Ha}, \mathrm{Hb}}=11.2 \mathrm{~Hz}, J_{5-\mathrm{Ha}, \mathrm{H}}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{s}}\right), 2.2\left(\mathrm{dd}, J_{5-\mathrm{Hb}, 6 \mathrm{H}}\right.$ $\left.=16 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 2.0(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{H}), 1.69\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{a}}\right), 1.53$ ($\mathrm{m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{b}}$), $1.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ile}\right), 1.1(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}), 0.9(\mathrm{~m}$, $\left.9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 192(\mathrm{C}-4), 171.1$ (C=0), 148.5 (C-2), 134.9 (C-ipso), 128.6, 128.5, 128.3 (Ph), 98.9 (C-3), $69.8(\mathrm{C}-\alpha), 67.0\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 57.14(\mathrm{C}-6), 38.8(\mathrm{C}-5), 33.8(\mathrm{C}-\beta$ Пe), 31.2 (C-7), 24.7 ($\mathrm{C}-8$), 18.3 (CH_{2} Пe), 15.3 (CH_{3} Пe), 13.4 (C-9), $10.4\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NO}_{3}: \mathrm{C}, 73.32 ; \mathrm{H}, 8.77 ; \mathrm{N}$, 4.06. Found: C, $73.55 ; \mathrm{H}, 8.58 ; \mathrm{N}, 4.16$.
\boldsymbol{N}-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6S)-2,3-didehydro-6-n-propylpiperidin-4-one (5i): $[\alpha]^{23} D=-178.4^{\circ}$ ($c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.97\left(\mathrm{~d}, J_{2 \cdot \mathrm{H}, 3-\mathrm{H}}\right.$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.93(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.60$ $(\mathrm{m}, 2 \mathrm{H}, 6-\mathrm{H}, \alpha-\mathrm{H}), 2.6$ (dd, $J_{6-\mathrm{Hz}, 5-\mathrm{Hb}}=13 \mathrm{~Hz}, J_{5-\mathrm{Ha}, 6-\mathrm{H}}=7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.5\left(\mathrm{dd}, J_{5-\mathrm{Hb}, 6 \mathrm{H}}=16 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 1.96(\mathrm{~m}, 1 \mathrm{H}$, β-H Ile), 1.73 (m, $1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{a}}$), $1.56\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{b}}\right.$), $1.29(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Il}\right), 1.2\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}_{\mathrm{a}}\right), 1.0\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}_{\mathrm{b}}\right), 0.9\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (CDCl 3 , 100.6 MHz) $\delta 191.0(\mathrm{C}-4), 171.0$ (C=0), 149.0 (C-2), $98.9(\mathrm{C}-3), 69.7(\mathrm{C}-\alpha), 61.7\left(\mathrm{OCH}_{3}\right), 57.0(\mathrm{C}-6), 38.9(\mathrm{C}-5)$, 34.2 (C- β Ile), 31.2 (C-7), 24.7 (C-8), 18.4 (CH_{2} Ile), $15.1\left(\mathrm{CH}_{3}\right)$, $13.8(\mathrm{C}-9), 10.4\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5}: \mathrm{C}, 67.27$; H ,
9.42; N, 5.24. Found: C, 67.27; H, 9.38; N, 5.20.
\boldsymbol{N}-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6R)-2,3-didehydro-6-phenylpiperidin-4-one (5k): $[\alpha]^{23} \mathrm{D}=-32^{\circ}$ (c $\left.=1.12, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.30(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ph}$, $2-\mathrm{H}), 5.14\left(\mathrm{~d}, J_{3-\mathrm{H}, 2 \mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 4.44$ (dd, $J_{6-\mathrm{H}, 5-\mathrm{Ha}}=5.8$ $\left.\mathrm{Hz}, J_{6-\mathrm{H}, 5-\mathrm{Hb}}=11.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.19(\mathrm{~d}$, $J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}$), 2.74 (dd, $J_{5-\mathrm{Ha} 5 \text { - } \mathrm{Hb}}=14.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 2.63 (dd, $1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}$), 1.9 (m, $1 \mathrm{H}, \beta-\mathrm{CH}$), $1.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ile} \mathrm{CH}_{2 \mathrm{a}}\right.$), $0.95\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Ile $\mathrm{CH}_{2 \mathrm{~b}}$), 0.76 ($\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}$, Ile CH_{3}), 0.70 ($\mathrm{d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ile} \mathrm{CH} 3$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}$) δ 190.7 (C-4), 170.7 ($\mathrm{C}=0$), 151.0 (C-2), 138.2 (C-ipso), 128.3, 128.1, 127.8 (Ph), $101.1(\mathrm{C}-3), 67.2(\mathrm{C}-\alpha), 62.9\left(\mathrm{OCH}_{3}\right), 51.7(\mathrm{C}-6), 44.2$ (C-5), 34.3 (C- β), 24.7 (Ile CH2 $), 15.2\left(\right.$ Ile $\left.\mathrm{CH}_{3}\right)$, $10.4\left(\right.$ Ile $\left.\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}$: C, 71.73; $\mathrm{H}, 7.69 ; \mathrm{N}, 4.65$. Found: C, 71.35; H, 7.74; N, 4.62.
\boldsymbol{N}-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6R)-2,3-didehydro-6-(4-nitrophenyl)piperidin-4-one (51): $\left[\alpha{ }^{23} \mathrm{D}\right.$ $=-2.5^{\circ}\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.14(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}), 7.25\left(\mathrm{~d}, J_{2 \cdot \mathrm{H}, 3 \mathrm{H}}=7.9 \mathrm{~Hz}\right.$, $1 \mathrm{H}, 2-\mathrm{H}), 5.12(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 4.64\left(\mathrm{dd}, J_{6-\mathrm{H}, 5 \mathrm{Ha}}=6.3 \mathrm{~Hz}, J_{6-\mathrm{H}, 5 \mathrm{Hb}}\right.$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.20(\mathrm{~d}, J=10.7 \mathrm{~Hz}$, $1 \mathrm{H}, \alpha-\mathrm{H}), 2.7\left(\mathrm{dd}, J_{5-\mathrm{Ha}, 5-\mathrm{Hb}}=16.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{s}}\right), 2.60(\mathrm{dd}, 1 \mathrm{H}$, $5-\mathrm{H}_{\mathrm{b}}$), $2.0(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{CH}), 1.64\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Ile $\mathrm{CH}_{2 \mathrm{a}}$), $0.95(\mathrm{~m}, 1 \mathrm{H}$, Ile $\mathrm{CH}_{2 \mathrm{~b}}$), $0.81\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.75(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3$ $\left.\mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 189.2(\mathrm{C}-4), 169.9$ ($\mathrm{C}=0$), 151.2 ($\mathrm{C}-2$), 147.7 (C-ipso), 145.8 ($p-\mathrm{C}, \mathrm{PhNO}_{2}$), 127.1 (2 $\mathrm{C}, \mathrm{Ph}), 124.3(2 \mathrm{C}, \mathrm{Ph}), 101.5(\mathrm{C}-3), 68.9(\mathrm{C}-\alpha), 60.8\left(\mathrm{OCH}_{3}\right), 51.8$ (C-6), 43.4 (C-5), 34.2 (C- β), 24.7 (Ile CH_{2}), 15.1 (Ile CH_{3}), 10.4 (Ile CH_{3}). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, 62.42 ; \mathrm{H}, 6.40 ; \mathrm{N}, 8.08$. Found: C, 62.25; H, 6.68; N, 8.05 .
$\boldsymbol{N}-[(S)$-1-(Benzyloxycarbonyl)-(S)-2-methylbutyl]($6 R$)-2,3-didehydro-6-(4-nitrophenyl)piperidin-4-one (5m): $[\alpha]^{23}{ }_{\mathrm{D}}=16.4^{\circ}\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.11$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.5-7.3(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}, 2-\mathrm{H}), 5.15\left(\mathrm{~d}, J_{2 \mathrm{H}, \mathrm{H}}\right.$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \cdot \mathrm{H}), 5.1-4.9\left(2 \mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.52$ (t, $1 \mathrm{H}, 6-\mathrm{H}), 3.20(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}), 2.62\left(\mathrm{~d}, J_{5-\mathrm{H}, \mathrm{H}}=\right.$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$). $2.04(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{CH}), 1.68\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Ile CH ${ }_{2 \mathrm{a}}$), 0.98 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ile} \mathrm{CH}_{2 \mathrm{~b}}$), $0.84\left(\mathrm{t}, 3 \mathrm{H}\right.$, $\mathrm{Il} \mathrm{CH}_{3}$), $0.78(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}, \mathrm{Ile} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}$) $\delta 189.5(\mathrm{C}-4), 169.5$ ($\mathrm{C}=\mathrm{O}$), 150.9 ($\mathrm{C}-2$), 147.9 ($\mathrm{C}-\mathrm{ipso}$), 145.6 ($p-\mathrm{C}, \mathrm{PhNO}_{2}$), 134.8 (C-ipso), 128-126 ($6 \mathrm{C}, \mathrm{Ph}$), 102.1 (C-3), 68.8 ($\mathrm{C}-\alpha), 60.0\left(\mathrm{OCH}_{3}\right)$, 51.6 (C-6), 43.6 (C-5), $34.3(\beta-\mathrm{C}), 24.8\left(\mathrm{CH}_{2}\right.$ Ile), $15.2\left(\mathrm{CH}_{3}\right), 10.5$ $\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}: \mathrm{C}, 68.23 ; \mathrm{H}, 6.20 ; \mathrm{N}, 6.63$. Found: C, 68.32; H, 6.46; N, 6.39 .
$\boldsymbol{N}-[(\boldsymbol{S})$-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6R)-2,3-didehydro-6-(4-methoxyphenyl) piperidin-4-one (5n): $[\alpha]^{23}{ }_{\mathrm{D}}=-9.2^{\circ}\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.25$ (d, $J_{2 \mathrm{H}, 3 \mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), $7.14(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph}, J=8.6 \mathrm{~Hz}$), 6.82 (d, $2 \mathrm{H}, \mathrm{Ph}$), 5.12 (d, $1 \mathrm{H}, 3-\mathrm{H}), 4.37\left(\mathrm{dd}, J_{6-\mathrm{H}, 5 \mathrm{Ha}}=5.3 \mathrm{~Hz}, J_{6-\mathrm{H} 5 \mathrm{Hb}}\right.$ $=12.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, 0 \mathrm{CH}_{3}\right), 3.57\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.48(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}), 2.74$ (dd, $J_{5-\mathrm{Ha}, 5 \mathrm{Hb}}=16.4 \mathrm{~Hz}, 1$ $\mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}$), $2.55\left(\mathrm{dd}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 1.8(\mathrm{~m}, 1 \mathrm{H}, \beta-\mathrm{CH}), 1.64(\mathrm{~m}, 1 \mathrm{H}$, Ile $\mathrm{CH}_{2 \mathrm{a}}$), $0.95\left(\mathrm{~m}, 1 \mathrm{H}\right.$, Ile $\mathrm{CH}_{2 \mathrm{~b}}$), $0.75(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}$, Ile CH_{3}), $0.71\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Ile} \mathrm{CH} 3\right.$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100.6$ MHz) $\delta 191.3$ (C-4), 170.9 ($\mathrm{C}=0$), 159.6 (C-ipso), $151.0(\mathrm{C}-2), 130.0$ $\left(p-\mathrm{C}, \mathrm{PhOCH}_{3}\right), 128.8(2 \mathrm{C}, \mathrm{Ph}), 114.2$ (2 C, Ph), 101.1 (C-3), 66.6 ($\mathrm{C}-\alpha), 62.7\left(\mathrm{OCH}_{3}\right), 55.1\left(\mathrm{OCH}_{3}, \mathrm{Ph}\right), 51.7(\mathrm{C}-6), 44.4(\mathrm{C}-5), 34.4$ (C- β), $24.7\left(\mathrm{CH}_{2} \mathrm{Ile}\right.$), $15.2\left(\mathrm{Ile} \mathrm{CH}_{3}\right), 10.5\left(\mathrm{Ile} \mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{4}$: C, $68.68 ; \mathrm{H}, 7.60 ; \mathrm{N}, 4.26$. Found: $\mathrm{C}, 68.71 ; \mathrm{H}$, 7.69; N, 4.45.
\boldsymbol{N}-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6S)-2,3-didehydro-6-(2-methylpropyl)piperidin-4-one (50): $[\alpha]^{23} \mathrm{D}$ $=-134.2^{\circ}\left(c=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.1$ (d, $J_{2 \cdot \mathrm{H}, 3 \mathrm{H}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{H}$), $5.00(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 3.7(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.40(\mathrm{~m}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}), 3.2$ (ddd, $J_{1}=4.4 \mathrm{~Hz}$, $\left.J_{2}=7.7 \mathrm{~Hz}, J_{3}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 2.5\left(\mathrm{dd}, J_{5-\mathrm{Ha}, 5 \mathrm{Hb}}=9.6 \mathrm{~Hz}\right.$, $\left.J_{5-\mathrm{Ha}, \mathrm{H}}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.37\left(\mathrm{dd}, J_{5-\mathrm{Hb}, 6 \mathrm{H}}=16 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right)$, 2.06 ($\mathrm{m}, 2 \mathrm{H}, 7-\mathrm{H}, \beta-\mathrm{H} \mathrm{Ile}$), $1.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Il} \mathrm{CH}_{2 \mathrm{a}}\right), 1.3(\mathrm{~m}, 1 \mathrm{H}$, Ile $\mathrm{CH}_{2 \mathrm{~b}}$), $0.9\left(\mathrm{~m}, 12 \mathrm{H}, 4 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}$) $\delta 191.6$ (C-4), 171.5 ($\mathrm{C}=0$), 149.3 (C-2), 99.5 (C-3), 69.7 (C- α), $62.9\left(\mathrm{OCH}_{3}\right), 52.2$ (C-6), 35.2 (C-5), 34.2 (C- $\beta \mathrm{Ile}$), 29.2 (C-7), 25.6 $\left(\mathrm{CH}_{2} \mathrm{Ile}\right), 19.3,17.0\left(\mathrm{CH}_{3}\right), 15.1\left(\mathrm{CH}_{3}\right), 11.0\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, $67.39 ; \mathrm{H}, 9.42 ; \mathrm{N}, 5.42$. Found: C, $67.21 ; \mathrm{H}$, 9.52; N, 5.16.
\boldsymbol{N}-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6S)-2,3-didehydro-6-n-pentylpiperidin-4-one (5p): $[\alpha]^{23} \mathrm{D}=-155.7^{\circ}$
($c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.98\left(\mathrm{~d}, \mathrm{~J}_{2-\mathrm{H}, 3-\mathrm{H}}\right.$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{H}), 4.9(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.39$ $(\mathrm{m}, 2 \mathrm{H}, 6-\mathrm{H}, \alpha-\mathrm{H}), 2.6$ (dd, $J_{5-\mathrm{Ha}, 5-\mathrm{Hb}}=11 \mathrm{~Hz}, J_{5-\mathrm{Ha}, 6-\mathrm{H}}=6.3 \mathrm{~Hz}$, $1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}$), $2.3\left(\mathrm{dd}, J_{\mathrm{b}-\mathrm{Hb}, \mathrm{G}-\mathrm{H}}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 1.96(\mathrm{~m}, 1 \mathrm{H}$, β-H Ile), $1.73\left(\mathrm{~m}, 1 \mathrm{H}, 7 \cdot \mathrm{H}_{\mathrm{a}}\right), 1.6\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{b}}\right), 1.30(\mathrm{~m}, 6 \mathrm{H}$, $8-\mathrm{H}, 9-\mathrm{H}$, $\left.\mathrm{He} \mathrm{CH}_{2}\right), 0.9\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100.6$ $\mathrm{MHz}) \delta 191.1(\mathrm{C}-4), 171.0(\mathrm{C}=0)$, 149.1 (C-2), 98.9 (C-3), 69.8 $(\mathrm{C}-\alpha), 62.2\left(\mathrm{OCH}_{3}\right), 57.2(\mathrm{C}-6), 39.0(\mathrm{C}-5), 34.1$ (C- β Ile), 28.9, 27.4, 27.3, $22.0\left(\mathrm{CH}_{2}\right), 15.4\left(\mathrm{CH}_{3}\right), 13.8(\mathrm{C}-10), 10.4\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{3}: \mathrm{C}, 68.54 ; \mathrm{H}, 9.35 ; \mathrm{N}, 5.00$. Found: C, $68.62 ; \mathrm{H}$, 9.24; N, 4.78.
$\boldsymbol{N}-[(\boldsymbol{S})-1$-(Benzyloxycarbonyl)-2-methylpropyl]-(6S)-6-[3-(methozycarbonyl)propyl]-2,3-didehydropiperidin-4-one (5q): $[\alpha]^{23}{ }_{\mathrm{D}}=-131.5^{\circ}\left(c=1.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 7.3(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph}), 7.0\left(\mathrm{~d}, J_{2 \mathrm{H}, 3-\mathrm{H}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 5.15$ (s, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}$), 4.98 (d, $\left.1 \mathrm{H}, 3-\mathrm{H}\right), 3.62\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.45$ (m, $1 \mathrm{H}, 6-\mathrm{H}$), 3.3 (d, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}), 2.45\left(\mathrm{dd}, J_{5-\mathrm{Ha}, 6-\mathrm{Hb}}\right.$ $\left.=12.0 \mathrm{~Hz}, J_{5-\mathrm{He}, \mathrm{H}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.25\left(\mathrm{dd}, 3 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}, \beta-\mathrm{H}\right.$, $\left.7-\mathrm{H}_{\mathrm{a}}\right), 1.8-1.1\left(\mathrm{~m}, 5 \mathrm{H}, 7-\mathrm{H}_{\mathrm{b}}, 8-\mathrm{H}, 9-\mathrm{H}\right), 0.9(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Val} \mathrm{CH} 3)$ ${ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 100.6 \mathrm{MHz}\right) \delta 190.8(\mathrm{C}-4), 173.3(\mathrm{C}=0), 170.2$ (C=0), 148.7 (C-2), 135.0 (C-ipso), 128.7, 128.6, 128.5 (Ph), 99.2 $(\mathrm{C}-3), 71.2(\mathrm{C}-\alpha), 67.3\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 57.6\left(\mathrm{OCH}_{3}\right), 51.6(\mathrm{C}-6), 38.5$ (C-5), 33.5 (C- β Val), 28.7 (C-7), 28.0 (C-8), 20.3 (C-9), 19.2, 19.1 $\left(\mathrm{CH}_{3} \mathrm{Val}\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{5}: \mathrm{C}, 68.36 ; \mathrm{H}, 7.55 ; \mathrm{N}, 3.61$. Found: C, 68.55; H, 7.59; N, 3.53.
\boldsymbol{N}-[(S)-1-(Benzylozycarbonyl)-2-methylpropyl]-(6S)-6-[2-(ethoxycarbonyl)ethyl]-2,3-didehydropiperidin-4-one (5r): $[\alpha]_{\mathrm{D}}^{23}=-137.5^{\circ}\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.3(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph}), 7.22\left(\mathrm{~d}, J_{2 \mathrm{H}, 3 \mathrm{H}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 5.17(\mathrm{~s}, 2$ $\left.\mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.9(\mathrm{~d}, 1 \mathrm{H}, 3 \mathrm{H}), 4.10\left(\mathrm{q}, \mathrm{J}=12 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, 3.45 (m, $1 \mathrm{H}, 6-\mathrm{H}), 3.39(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}), 2.47$ (dd, $\left.J_{6-\mathrm{Ha}, 5-\mathrm{Hb}}=11.0 \mathrm{~Hz}, J_{5-\mathrm{Ha}, 6 \mathrm{H}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.3(\mathrm{~m}, 4 \mathrm{H}$, $\left.5-\mathrm{H}_{\mathrm{b}}, \beta-\mathrm{H}, 7-\mathrm{H}\right), 1.9\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}_{\mathrm{a}}\right), 1.69\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}_{\mathrm{b}}\right), 1.2(\mathrm{t}$, $3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$), 0.9 (dd, 6 H , Val CH 3) ; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 100.6$ MHz) $\delta 190.4(\mathrm{C}-4), 172.0(\mathrm{C}=0)$, $170.3(\mathrm{C}=0)$, $148.3(\mathrm{C}-2), 135.0$ (C-ipso), 128.7, 128.6, 128.5, (Ph), 99.3 (C-3), 71.6 (C- α), 67.3 $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 60.6\left(\mathrm{OCH}_{2}\right), 56.6(\mathrm{C}-6), 38.5(\mathrm{C}-5), 31.8$ (C- β Val), 29.7 (C-7), 27.9 (C-8), 19.3, $19.2\left(\mathrm{CH}_{3} \mathrm{Val}\right), 14.1\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{6}: \mathrm{C}, 68.32 ; \mathrm{H}, 7.54 ; \mathrm{N}, 3.61$. Found: $\mathrm{C}, 68.70 ; \mathrm{H}$, 7.45; N, 3.62 .
\boldsymbol{N}-[(S)-1-(Methoxycarbonyl)-(S)-2-methylbutyl]-(6S)-2,3-didehydro-6-[3-(2-methyl-1,3-dithian-2-yl)propyl]-piperidin-4-one (5s): $[\alpha]^{23}{ }_{\mathrm{D}}=-99.1^{\circ}\left(c=1.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.9\left(\mathrm{~d}, J_{2 \cdot \mathrm{H} \cdot 3 \mathrm{H}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 4.93(\mathrm{~d}$, $1 \mathrm{H}, 3-\mathrm{H}$), 3.7 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.40(\mathrm{~m}, 2 \mathrm{H}, 6-\mathrm{H}, \alpha-\mathrm{H}$), 2.7 (m, $4 \mathrm{H}, \mathrm{SCH}_{2}$), $2.67\left(\mathrm{dd}, J_{6-\mathrm{Ha}, 3-\mathrm{Hb}}=14.4 \mathrm{~Hz}, J_{5-\mathrm{Ha}, \mathrm{G}}=6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $\left.5-\mathrm{H}_{\mathrm{a}}\right), 2.3\left(\mathrm{dd}, J_{5-\mathrm{Hb}, 6-\mathrm{H}}=3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 1.8(\mathrm{~m}, 5 \mathrm{H}, \beta-\mathrm{H} \mathrm{Il}$, $\left.7-\mathrm{H}, \mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 1.5(\mathrm{~m}, 7 \mathrm{H}), 1.2(\mathrm{~m}, 8 \mathrm{H}), 0.9\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{8}\right)$; ${ }^{18} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 191.0(\mathrm{C}-4), 171.0(\mathrm{C}=0)$, 148.9 (C-2), 99.2 (C-3), 70.0 (C- α), 65.3 (SCS), $61.7\left(\mathrm{OCH}_{3}\right.$), 57.1 ($\mathrm{C}-6$), $48.5\left(\mathrm{CH}_{2} \mathrm{~S}\right), 41.5\left(\mathrm{CH}_{2} \mathrm{~S}\right), 39.1(\mathrm{C}-5), 34.2(\mathrm{C}-\beta \mathrm{He}), 29.2(\mathrm{C}-7)$, $27.3(\mathrm{C}-11), 26.4,25.2,25.0,22.6\left(\mathrm{CH}_{2}\right), 15.1\left(\mathrm{CH}_{3}\right), 10.4\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{~S}_{2}: \mathrm{C}, 60.11 ; \mathrm{H}, 8.32 ; \mathrm{N}, 3.51$. Found: C, 59.86; H, 8.44; N, 3.45.
\boldsymbol{N}-[[(S)-1-(Methoxycarbonyl)ethyl]phenyl]-(6S)-2,3-di-dehydro-6-n-propylpiperidin-4-one (5t): $[\alpha]_{\mathrm{D}}^{23}=-196.7^{\circ}(\mathrm{c}$ $=2, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.3(\mathrm{~m}, 6 \mathrm{H}, 2 \mathrm{H}, \mathrm{Ph})$, 4.95 (dd, $\left.J_{3-H 2 H}=7.3 \mathrm{~Hz}, \mathrm{~J}=0.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 4.0(\mathrm{dd}, J=6.7$ $\mathrm{Hz}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}), 3.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.40(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H})$, 3.28 (dd, $J=11 \mathrm{~Hz}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \beta-\mathrm{H}), 3.0(\mathrm{dd}, 1 \mathrm{H}, \beta-\mathrm{H})$, $2.65\left(\mathrm{dd}, J_{5-\mathrm{H}_{2} 6 \mathrm{Hb}}=11 \mathrm{~Hz}, J_{5-\mathrm{Ha}-\mathrm{H}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.2(\mathrm{dd}$, $\left.J_{5 . \mathrm{Hb}, \mathrm{B}-\mathrm{H}}=3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 1.40\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{a}}\right), 1.1-0.9(\mathrm{~m}, 3 \mathrm{H}$, $\left.7-\mathrm{H}_{\mathrm{b}}, 8-\mathrm{H}\right), 0.75\left(\mathrm{~m}, 9 \mathrm{H}, 3 \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}$) б 191.0 ($\mathrm{C}-4$), 170.5 ($\mathrm{C}=0$), 148.4 (C-2), 135.7 (C-ipso), 128.6, 128.4, 127.9 (Ph), 98.6 ($\mathrm{C}-3$), $65.8\left(\mathrm{C}-\alpha\right.$), $58.0\left(\mathrm{OCH}_{3}\right), 52.5(\mathrm{C}-6), 39.1$ (C-5), 36.2 (C- β Phe), 31.4 (C-7), 18.2 (C-8), 13.8 (C-9). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3}: \mathrm{C}, 71.73 ; \mathrm{H}, 7.69 ; \mathrm{N}, 4.65$. Found: $\mathrm{C}, 71.29 ; \mathrm{H}$, 7.82; N, 4.64.

Removal of the Chiral Auxiliary Group: Liberation of the Carboxylic Acids. (a) From the Methyl Ester 5i. To a solution of 1 g (3.7 mmol) of 5 i in 100 mL of aqueous methanol (4:1) was added 100 mg of LiOH , and the mixture was heated to $40^{\circ} \mathrm{C}$ for 3 h . The solvent was removed in vacuo; the remaining oily residue was taken up in water and extracted with ether. The aqueous phase was acidified and extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4},
and the solvent was evaporated to give $900 \mathrm{mg}(95 \%)$ of the acid 11a which was used without further purification.
(b) From the Benzyl Ester 5r. To a solution of 1.2 g (3.4 mmol) of 5 r in 70 mL of methanol was added 100 mg of 5% $\mathrm{Pd} /$ charcoal, and the mixture was stirred under 1 atm of hydrogen for 5 h (monitored by TLC). The reaction mixture was filtered through a Celite pad and washed with methanol. The filtrate was evaporated to dryness to afford $850 \mathrm{mg}(96 \%)$ of 11 b which was used without further characterization.
N-[(S)-1-Carboxy-(S)-2-methylbutyl]-(6S)-2,3-di-dehydro-6-n-propylpiperidin-4-one (11a): $[\alpha]^{23} \mathrm{D}=120^{\circ}$ ($c=$ 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 11.4$ (s, $1 \mathrm{H}, \mathrm{COOH}$), $7.1\left(\mathrm{~d}, J_{2 \cdot \mathrm{H}, 3-\mathrm{H}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 5.1(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 3.51(\mathrm{~m}, 1$ $\mathrm{H}, 6-\mathrm{H}), 2.75(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \alpha-\mathrm{H}), 2.75\left(\mathrm{dd}, J_{5-\mathrm{Ha} 5-\mathrm{Hb}}=12.1\right.$ $\mathrm{Hz}, J_{5-\mathrm{Ha}, 6-\mathrm{H}}=7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}$), $2.38\left(\mathrm{dd}, J_{\mathrm{b}-\mathrm{Hb}, \mathrm{B} \mathrm{H}}=13 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $5-\mathrm{H}_{\mathrm{b}}$), 1.98 (m, $1 \mathrm{H}, \beta-\mathrm{HIle}$), $1.76\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{a}}\right), 1.54(\mathrm{~m}, 1 \mathrm{H}$, $7-\mathrm{H}_{\mathrm{b}}$), 1.42 (m, 2 H , Ile CH_{2}), 1.36 (m, $2 \mathrm{H}, 8-\mathrm{H}$), $0.9(\mathrm{~m}, 9 \mathrm{H}, 3$ $\left.\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 192.1(\mathrm{C}-4), 172.0(\mathrm{C}=0)$, 151.7 (C-2), 97.3 (C-3), 70.6 (C- α), 57.3 (C-6), 37.6 (C-5), 34.2 (C- β Пe), 30.0 (C-7), $25.0(\mathrm{C}-8), 18.4\left(\mathrm{CH}_{2}\right.$ Ie), $15.4\left(\mathrm{CH}_{3}\right), 13.9(\mathrm{C}-9)$, $10.9\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{3}: \mathrm{C}, 66.37 ; \mathrm{H}, 9.15 ; \mathrm{N}$, 5.53. Found: C, 66.06; H, 9.10; N, 5.23 .

General Procedure for the Curtius Rearrangement and Subsequent Hydrogenation. To a suspension of $1 \mathrm{~g}(3.9 \mathrm{mmol})$ of the acid 11 in 50 mL of toluene under an argon atmosphere was slowly added $0.6 \mathrm{~mL}(4 \mathrm{mmol})$ of triethylamine until all of the acid dissolved. The solution was cooled to $0^{\circ} \mathrm{C}$, and 0.9 mL (5 mmol) of diphenyl phosphorazidate and $0.6 \mathrm{~mL}(5.5 \mathrm{mmol})$ of benzyl alcohol were added during 10 min . The cooling bath was removed, and the solution was stirred at rt until the evolution of nitrogen ceased and then stirred for an additional 72 h at 40 ${ }^{\circ} \mathrm{C}$ or kept at $80^{\circ} \mathrm{C}$ overnight. The reaction mixture was poured into water and extracted three times with ether. The combined organic phases were washed three times each with 1 N NaHCO and 1 N HCl and dried with MgSO_{4}, and the solvent was removed in vacuo. The crude product was taken up in 70 mL methanol, 250 mg of $5 \% \mathrm{Pd} /$ charcoal was added, and the mixture was stirred under 1 atm of hydrogen at rt for 5 h . After filtration of the mixture through a Celite pad, the solvent was removed in vacuo, and the residue was subjected to flash chromatography using petroleum ether/acetone ($3: 1 \mathrm{v} / \mathrm{v}$) as eluent. If the rearrangement starting from 11a was carried out at rt for $3 \mathrm{~d}, 440 \mathrm{mg}(80 \%)$ of the enaminone 15a was obtained as a colorless oil. When the reaction was carried out at $80^{\circ} \mathrm{C}$ overnight, the yield was 50%.
(6S)-2,3-Didehydro-6-n-propylpiperidin-4-one (15a): $[\alpha]^{23} \mathrm{D}$ $=325.5^{\circ}\left(c=1.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.13$ (dd, $\left.J_{2-\mathrm{H}, 3-\mathrm{H}}=6.9 \mathrm{~Hz}, J_{2-\mathrm{H}, \mathrm{NH}}=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 6.43(\mathrm{~s}, 1 \mathrm{H}$, NH), $4.83(\mathrm{~d}, 1 \mathrm{H}, 3-\mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.32\left(\mathrm{dd}, J_{5-\mathrm{Ha}, 5-\mathrm{Hb}}\right.$ $\left.=11.0 \mathrm{~Hz}, J_{5-\mathrm{Ha}, 6-\mathrm{H}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.2\left(\mathrm{dd}, J_{5-\mathrm{Hb}, 6 \mathrm{H}}=13\right.$ $\left.\mathrm{Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 1.5\left(\mathrm{~m}, 1 \mathrm{H}, 7 \cdot \mathrm{H}_{\mathrm{a}}\right), 1.45\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{b}}\right), 1.25(\mathrm{~m}$, $2 \mathrm{H}, 8-\mathrm{H}), 0.9(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100.6\right.$ MHz) $\delta 192.4$ (C-4), 151.5 (C-2), 97.6 (C-3), 52.7 (C-6), 41.6 (C-5), 35.9 (C-7), 18.3 (C-8), 13.9 (C-9). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}$, 69.03; H, 9.41 ; N, 10.06. Found: C, 69.03; H, 9.44; N, 9.79.
(6S)-6-[2-(Ethoxycarbonyl)ethyl]-2,3-didehydro-piperidin-4-one (15 b). The benzyl ester 5 r ($11.1 \mathrm{~g}, 28.4 \mathrm{mmol}$) was dissolved in 250 mL of methanol, and 200 mg of $5 \% \mathrm{Pd} /$ charcoal was added. The mixture was stirred under hydrogen gas for 4 h and then evaporated in vacuo. The carboxylic acid 11b, thus liberated, was used immediately in the subsequent reaction. The Curtius reaction was carried out at $80^{\circ} \mathrm{C}$ overnight as described for 15 a to give $2.81 \mathrm{~g}(50 \%)$ of the enaminone 15 b : $[\alpha]^{23}{ }_{\mathrm{D}}=224.1^{\circ}\left(c=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.13\left(\mathrm{t}, J_{2 . \mathrm{H}, 3 \mathrm{H}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}\right), 5.99(\mathrm{~s}$, broad, $1 \mathrm{H}, \mathrm{NH})$ 4.93 (d, $1 \mathrm{H}, 3-\mathrm{H}$), 4.10 ($\mathrm{q}, J=12 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}$), 3.65 (dddd, $\left.J_{1}=5.8, J_{2}=6.1, J_{3}=11.7, J_{4}=12.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 2.40(\mathrm{~m}$, $4 \mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}), 1.96\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}_{8}\right), 1.80\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}_{\mathrm{b}}\right), 1.2(\mathrm{t}$, $3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCH}_{3}, 100.6 \mathrm{MHz}\right) \delta 192.4(\mathrm{C}-4), 173.3$ $\left(\mathrm{C}=0\right.$), $151.1(\mathrm{C}-2), 98.8(\mathrm{C}-3), 60.9\left(\mathrm{OCH}_{2}\right), 52.8(\mathrm{C}-6), 41.7(\mathrm{C}-5)$, 30.4 (C-7), 28.6 (C-8), $14.1\left(\mathrm{CH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{3}$: C, 60.90; H, 7.67 ; N, 7.1. Found: C, 60.57; H, 7.81 ; N, 6.87 .
\boldsymbol{N}-(Benzyloxycarbonyl)-(6S)-2,3-didehydro-6-n-propyl-piperidin-4-one (19). To a solution of $1.36 \mathrm{~g}(9.6 \mathrm{mmol})$ of enaminone $15 a$ in 70 mL of THF was added a solution of 6 mL (9.6 mmol) of butylithium (1.6 M in hexane). A white precipitate formed which dissolved again when 1.3 mL (1.1 equiv) of (ben-
zyloxy)carbonyl chloride was added via syringe. The reaction mixture was gradually warmed to rt within 50 min , the THF was evaporated, and 70 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added. After extraction with $1 \mathrm{~N} \mathrm{NaHCO}_{3}$ and drying of the organic phase with MgSO_{4}, the solvent was removed in vacuo. The amide $19(2.18 \mathrm{~g}, 85 \%)$ was purified by flash chromatography with petroleum ether/ acetone (4:1, v / v) as eluent: $[\alpha]^{23}{ }_{D}=-86.7^{\circ}\left(c=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right) \delta 7.7$ (s, broad, $1 \mathrm{H}, 2 \mathrm{H}$), 7.3 (s, 5 $\mathrm{H}, \mathrm{Ph}), 5.27\left(\mathrm{~m}, 3 \mathrm{H}, 3-\mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right), 4.6$ (s, broad, $1 \mathrm{H}, 6-\mathrm{H}$), 2.75 (dd, $\left.J_{5-\mathrm{Ha}, 5-\mathrm{Hb}}=11.2 \mathrm{~Hz}, J_{5-\mathrm{Ha}, \mathrm{B}-\mathrm{H}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.39$ (dd, $\left.J_{5-\mathrm{Hb},-\mathrm{H}}=17 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 1.52(\mathrm{~m}, 2 \mathrm{H}, 7 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H}$, $8-\mathrm{H}_{2}, 1.28\left(\mathrm{~m}, 1 \mathrm{H}, 8-\mathrm{H}_{\mathrm{b}}\right), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right.$) $\delta 192.4$ (C-4), $151.5(\mathrm{C}=0), 141.0(\mathrm{C}-2), 134.3$ (C-ipso), 128.6, 128.3, $127.8(\mathrm{Ph}), 107.6(\mathrm{C}-3), 69.8\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 53.1$ (C-6), 39.5 (C-5), 32.6 (C-7), 18.7 (C-8), 13.6 (C-9). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$: $\mathrm{C}, 70.03 ; \mathrm{H}, 7.01$; $\mathrm{N}, 5.10$. Found: $\mathrm{C}, 70.10 ; \mathrm{H}$, 7.12; N, 5.47.
\boldsymbol{N}-(Benzyloxycarbonyl)-(6S)-6-n -propylpiperidin-4-one (20). To a solution of $2.1 \mathrm{~g}(7.63 \mathrm{mmol})$ of the enaminone 19 at $-78^{\circ} \mathrm{C}$ was slowly added 7.7 mL of a 1 M solution of L-Selectride via syringe over 5 min . The reaction mixture was kept at that temperature for 15 min and was then warmed to rt over 30 min . Water (2 mL) was added, and the solvent was evaporated. Chromatography of the residue with petroleum ether/acetone (4:1, v / v) yielded $1.7 \mathrm{~g}(81 \%)$ of the ketone 20: $[\alpha]^{23} \mathrm{D}=-13.8^{\circ}(c=$ $1.05, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.3(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph}), 5.14$ $\left(\mathrm{d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}-\mathrm{Ph}\right), 4.6\left(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 4.3(\mathrm{~s} \mathrm{br}$, $\left.1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 3.18(\mathrm{~m}, 1 \mathrm{H}, 6-\mathrm{H}), 2.6\left(\mathrm{dd}, J_{5-\mathrm{Ha}, \mathrm{Hb}}=10.5 \mathrm{~Hz}, J_{5-\mathrm{Ha} \cdot \mathrm{H}}\right.$ $\left.=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.4\left(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 2.27(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H})$, 1.3 (m, br, $4 \mathrm{H}, 7-\mathrm{H}, 8-\mathrm{H}), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 204.5(\mathrm{C}-4), 155.3(\mathrm{C}=0)$, 136.3 (C-ipso), 128.6, 128.3, 127.8 (Ph), $67.4\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 53.1(\mathrm{C}-6), 49.3(\mathrm{C}-2)$, 40.3 (C-3), 38.5 (C-5), 34.3 (C-7), 18.7 (C-8), 13.5 (C-9). Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3}$: $\mathrm{C}, 69.70 ; \mathrm{H}, 7.68 ; \mathrm{N}, 5.09$. Found: $\mathrm{C}, 69.36 ; \mathrm{H}$, 7.51; N, 5.50 .
\boldsymbol{N}-(Benzyloxycarbonyl)-(6S)-4-(1,3-dithiolan-4-yl)-6-npropylpiperidine (21). To a solution of $1.5 \mathrm{~g}(5.5 \mathrm{mmol})$ of ketone 20 in 70 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added 0.7 mL of ethanedithiol and 3 g of molecular sieves ($4 \AA$). The mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$, and $3.26 \mathrm{~mL}(25.5 \mathrm{mmol})$ of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ was added. The reaction mixture was stirred overnight, poured into 50 mL of $1 \mathrm{~N} \mathrm{NaHCO}_{3}$, and extracted twice with 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4}, and the solvent was removed in vacuo. After flash chromatography of the residue with petroleum ether/acetone ($5: 1, \mathrm{v} / \mathrm{v}$) $1.49 \mathrm{~g}(78 \%)$ of the thioketal 21 was obtained: $[\alpha]^{23}{ }_{\mathrm{D}}=-12.6^{\circ}\left(c=1.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 7.3(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ph}), 5.14\left(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ph}\right)$, 4.32 (dd, $\left.J=7.2 \mathrm{~Hz}, J=13 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}\right), 4.0\left(\mathrm{dd}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right)$, $3.3\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.1$ (ddd, $J_{1}=3.5 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, J_{3}=11.1$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 2.6\left(\mathrm{dd}, J_{5-\mathrm{Ha}, 5 \mathrm{Hb}}=16.0 \mathrm{~Hz}, J_{5-\mathrm{Ha}, 6-\mathrm{H}}=6.0 \mathrm{~Hz}, 1\right.$ $\left.\mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.15\left(\mathrm{dd}, J_{5-\mathrm{Hb}, 6-\mathrm{H}}=14.2 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{b}}\right), 1.9(\mathrm{~m}, 2 \mathrm{H}$, $3-\mathrm{H}), 1.75\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{a}}\right), 1.62\left(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H}_{\mathrm{b}}\right), 1.27(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H})$, $0.85(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}, 9-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta$ 155.3 (C=O), 136.3 (C-ipso), 128.6, 128.3, 127.8 (Ph), 67.2 $\left(\mathrm{OCH}_{2} \mathrm{Ph}\right), 64.3(\mathrm{C}-4), 51.7$ (C-6), 42.9 (C-2), 42.1, $40.1\left(\mathrm{SCH}_{2}-\right.$ $\mathrm{CH}_{2} \mathrm{~S}$), 38.5 (C-3), 37.4 (C-5), 33.6 (C-7), 19.9 (C-8), 13.5 (C-9). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}_{2}: \mathrm{C}, 61.86 ; \mathrm{H}, 6.68 ; \mathrm{N}, 4.01$. Found: C, 61.91; H, 6.86; N, 4.07.
(S)-2-Propylpiperidine [(S)-Coniine, 22]. To a solution of 1.1 g (3.1 mmol) of the thioketal 21 in 70 mL of 2 -propanol was added 2.5 g of freshly prepared neutral washed Raney nickel, and the mixture was heated under a hydrogen atmosphere at reflux overnight. The suspension was filtered through Celite, and the pad was thoroughly washed with methanol. The filtrate was acidified with a solution of HCl in methanol. The solvent was evaporated, and the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /ether to yield $0.28 \mathrm{~g}(89 \%)$ of (S)-coniine hydrochloride: $[\alpha]^{23} \mathrm{D}=-5.8^{\circ}$ ($c=0.5$, ethanol) (lit. ${ }^{21}-6.9^{\circ}, c=1.5$, ethanol); $\mathrm{mp} 20{ }^{\circ}{ }^{\circ} \mathrm{C}$ (lit. ${ }^{21}$ $\left.\mathrm{mp} 215{ }^{\circ} \mathrm{C}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 57.1\left(\mathrm{CH}_{2}\right), 44.6(\mathrm{CH})$, $35.2,27.9,22.3,22.0,18.5\left(5 \mathrm{CH}_{2}\right), 13.5\left(\mathrm{CH}_{3}\right)$.
(6S)-2,3-Didehydroindolizidine-4,9-dione (23). To a solution of $1.7 \mathrm{~g}(8.62 \mathrm{mmol})$ of the enaminone 15 b in benzene was added
$1.28 \mathrm{~mL}(8.6 \mathrm{mmol})$ of DBU, and the reaction was heated at reflux for 18 h . The solvent was removed in vacuo, and $1 \mathrm{~g}(77 \%)$ of the desired lactam was isolated by flash chromatography of the residue, eluting with petroleum ether/acetone ($1.5: 1, \mathrm{v} / \mathrm{v}$): $[\alpha]^{23} \mathrm{D}$ $=449.0^{\circ}\left(c=1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.68$ (d, $J_{2 \cdot \mathrm{H}, 3 \mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), 5.43 (dd, $J=0.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}$), 4.16 (dddd, $J_{1}=4.4, J_{2}=5.9, J_{3}=8.6, J_{4}=10.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), $2.68\left(\mathrm{dd}, J_{1}=0.9, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 5 \cdot \mathrm{H}_{\mathrm{a}}\right), 2.60\left(\mathrm{~m}, 3 \mathrm{H}, 5 \cdot \mathrm{H}_{\mathrm{b}}\right.$, $7-\mathrm{H}), 1.85(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 193.2$ (C-4), 171.5 ($\mathrm{C}=0$), 137.6 (C-2), 109.0 (C-3), 55.4 (C-6), 43.2 (C-5), 30.8 (C-7), 26.0 (C-8). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}: \mathrm{C}, 63.57 ; \mathrm{H}$, 6.00 ; N, 9.27. Found: C, 63.42; H, 5.93; N, 9.08 .
(6S)-Indolizidine-4,9-dione (24). As described for 20, 900 mg (5.95 mmol) of the enaminone 23 was treated with 6.25 mL of a 1 M solution of L-Selectride. Chromatography was performed with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(50: 1, \mathrm{v} / \mathrm{v})$ to yield $0.45 \mathrm{~g}(50 \%)$ of the lactam 24 and $0.26 \mathrm{~g}(28 \%)$ of the allylic alcohol $25: \quad[\alpha]^{23}{ }_{\mathrm{D}}=-34.9^{\circ}(\mathrm{c}$ $=1.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.36$ (ddd, $J_{1}=2.9$ $\mathrm{Hz}, J_{2}=6.7 \mathrm{~Hz}, J_{3}=9.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}$), 3.7 (dddd, $J_{1}=3.83 \mathrm{~Hz}$, $\left.J_{2}=5.6 \mathrm{~Hz}, J_{3}=7.5 \mathrm{~Hz}, J_{4}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 2.9\left(\mathrm{ddd}, J_{1}=\right.$ $\left.5.4 \mathrm{~Hz}, J_{2}=9.7 \mathrm{~Hz}, J_{3}=10.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}\right), 2.53\left(\mathrm{dd}, J_{5-\mathrm{Ha}, 5-\mathrm{Hb}}\right.$ $\left.=14.1 \mathrm{~Hz}, J_{5-\mathrm{H} 2} 6-\mathrm{H}=7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}_{\mathrm{a}}\right), 2.45-2.2(\mathrm{~m}, 4 \mathrm{H}, 5-\mathrm{H}, 3-\mathrm{H}$, $7-\mathrm{H}_{\mathrm{a}}, 8-\mathrm{H}$), 1.72 (dddd, $J_{1}=5.4 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, J_{3}=9.4 \mathrm{~Hz}, J_{4}$ $=12.7 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 206.3(\mathrm{C}-4)$, 173.5 ($\mathrm{C}=\mathrm{O}$), 56.3 (C-6), 48.5 (C-2), 39.7 (C-5), 37.9 (C-3), 29.5 (C-7), 24.9 (C-8). Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{2}$: $\mathrm{C}, 62.73$; $\mathrm{H}, 7.24$; N, 9.14. Found: C, 62.50; H, 7.20; N, 9.20.
(6S)-4-(1,3-Dithiolan-4-yl)indolizidin-9-one (26). As described for $21,440 \mathrm{mg}$ (2.87 mmol) of 24 was reacted with 1.1 mL (3 equiv) of $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ and 0.36 mL (1.5 equiv) of ethanedithiol. Chromatography was performed with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(30: 1, \mathrm{v} / \mathrm{v})$ to afford $520 \mathrm{mg}(78 \%)$ of the thioketal 26: $[\alpha]^{23}{ }_{\mathrm{D}}=38.7^{\circ}(c=$ $\left.1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.12$ (ddd, $J_{1}=3.3$ $\mathrm{Hz}, J_{2}=4.8 \mathrm{~Hz}, J_{3}=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}$), 3.6 (dddd, $J_{1}=3.2 \mathrm{~Hz}$, $\left.J_{2}=3.5 \mathrm{~Hz}, J_{3}=3.9 \mathrm{~Hz}, J_{4}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 3.3(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}$), 2.86 (ddd, $J_{1}=3.1 \mathrm{~Hz}, J_{2}=9.1 \mathrm{~Hz}, J_{3}=13.0 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{b}}$), $2.3\left(\mathrm{~m}, J_{1}=13.1 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}\right), 2.2(\mathrm{~m}$, $2 \mathrm{H}), 2.0(\mathrm{~m}, 1 \mathrm{H}), 1.9$ (ddd, $J_{1}=4.9 \mathrm{~Hz}, J_{2}=11.6 \mathrm{~Hz}, J_{3}=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.7(\mathrm{~m}, 1 \mathrm{H}), 1.5(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right)$ $\delta 173.3$ (C=0), 65.5 (C-4), 56.2 (C-6), 48.9 (C-2), 40.5 (C-5), 39.6 and $39.5\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 37.9(\mathrm{C}-3), 30.1(\mathrm{C}-7), 24.5(\mathrm{C}-8)$. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NOS}_{2}$: C, 52.27 ; $\mathrm{H}, 6.59$; $\mathrm{N}, 6.11$. Found: C, 51.98 ; H, 6.66; N, 6.08.
($6 \boldsymbol{R}$)-Indolizidin-9-one (27). As described for 22, 480 mg (2.07 mmol) of the thioketal 26 was treated with 2.5 g of Raney nickel (neutral washed). After filtration through Celite and evaporation of the solvent, the residue was purified by chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(20: 1, \mathrm{v} / \mathrm{v})$ to yield $180 \mathrm{mg}(65 \%)$ of the amide 27: $[\alpha]^{23} \mathrm{D}=17.4^{\circ}\left(c=0.93, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 4.08$ (ddd, $J_{1}=4.6 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, J_{3}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}_{\mathrm{a}}$), 3.6 (dddd, $J_{1}=3.4 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, J_{3}=3.9 \mathrm{~Hz}, J_{4}=7.4 \mathrm{~Hz}$, 1 $\mathrm{H}, 6-\mathrm{H}$), 2.58 (ddd, $J_{1}=3.1 \mathrm{~Hz}, J_{2}=9.1 \mathrm{~Hz}, J_{3}=13.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.2-\mathrm{H}_{\mathrm{b}}\right), 2.3(\mathrm{~m}, 2 \mathrm{H}, 3-\mathrm{H}), 2.2(\mathrm{~m}, 2-\mathrm{H}), 1.8(\mathrm{~m}, 1 \mathrm{H}), 1.6(\mathrm{~m}, 1 \mathrm{H})$, $1.5(\mathrm{~m}, 2 \mathrm{H}), 1.3-1.1(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta$ $174.3(\mathrm{C}=0)$, $57.2(\mathrm{C}-6), 40.2(\mathrm{C}-2), 33.5\left(\mathrm{CH}_{2}\right), 30.2,25.3,24.4$, $23.6\left(\mathrm{CH}_{2}\right)$. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 69.03 ; \mathrm{H}, 9.41 ; \mathrm{N}, 10.06$. Found: C, 68.87; H, 9.63; N, 9.68.
$(6 R)$-Indolizidine $[(R)-\delta$-Coniceine, 28]. To a solution of 120 mg (2.5 mmol) of LiAlH_{4} in 10 mL of ether was added a solution of $120 \mathrm{mg}(0.86 \mathrm{mmol})$ of amide 27 in ether, and the mixture was heated at reflux overnight. The reaction mixture was poured onto 10 g of ice, and the aqueous phase was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried with MgSO_{4} and evaporated to dryness in vacuo to yield 64.7 mg (61%) of $(6 R)$-indolizidine 28: $[\alpha]^{23}{ }_{\mathrm{D}}=-7.9^{\circ}(c=0.15, \mathrm{EtOH})$ $\left[\right.$ lit. $\left.{ }^{20}[\alpha]^{23} \mathrm{D}=10.2^{\circ}(c=1.76, \mathrm{EtOH})\right]{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100.6\right.$ MHz) $\delta 64.4$ (C-6), $54.3(\mathrm{C}-2), 53.1(\mathrm{C}-9), 31.0\left(\mathrm{CH}_{2}\right), 29.7,25.5$, 24.6, $20.6\left(\mathrm{CH}_{2}\right)$.

Acknowledgment. This research was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the DEGUSSA AG.

[^0]: (1) (a) Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press: New York, 1987. (b) Boger, D. L. Chem. Rev. 1986, 86, 781. (c) Weinreb, S. M.; Staib, R. R. Tetrahedron 1982, 38, 3087. (d) Weinreb, S. M.; Levin, J. I. Heterocycles 1979, 12, 949.
 (2) (a) Kervin, J., Jr.; Danishefsky, S. Tetrahedron Lett. 1982, 23, 3739. (b) Danishefsky, S.; Langer, M.; Vogel, C. Tetrahedron Lett. 1985, 26, 5983. (c) Danishefsky, S.; Vogel, C. J. Org. Chem. 1986, 51, 3915. (d) Veyrat, C.; Wartzki, L.; Seyden-Penne, J. Tetrahedron Lett. 1986, 27, 2981. (e) Le Coz, L.; Wartzki, C.; Seyden-Penne, J.; Chapin, P.; Nierlich, M. Tetrahedron Lett. 1989, 30, 2795. (f) Brandstadter, S.; Ojima, I. Tetrahedron Lett. 1987, 28, 613. (g) Midland, M.; McLoughlin, J. Tetrahedron Lett. 1988, 29, 4653.

[^1]: (3) Kunz, H.; Pfrengle, W. Angew. Chem. 1989, 101, 1041; Angew. Chem., Int. Ed. Engl. 1989, 28, 1067.
 (4) (a) Grieco, P. A.; Bahsas, A. J. Org. Chem. 1987, 52, 5741 . (b) Grieco, P. A.; Parker, D. T.; Fobare, W. F.; Ruckle, R. J. Am. Chem. Soc. 1987, 109, 5859. (c) Grieco, P.; Larsen, S.; Fobare, W. Tetrahedron Lett. 1986, 27, 1975. (d) Waldmann, H.; Braun, M. Liebigs Ann. Chem. 1991, 1045. (e) Waldmann, H.; Braun, M. Tetrahedron: Asymmetry 1991, 2, 1231. (f) Waldmann, H. Angew. Chem. 1988, 100, 307; Angew. Chem., Int. Ed. Engl. 1988, 27, 274; Liebigs Ann. Chem. 1989, 231.
 (5) Preliminary communication: Waldmann, H.; Braun, M.; Dräger, M. Angew. Chem. 1990, 102, 1445; Angew. Chem., Int. Ed. Engl. 1990, 29, 1468.

[^2]: (6) (a) Waldmann, H. J. Org. Chem. 1988, 53, 6133. (b) Waldmann, H.; Dräger, M. Tetrahedron Lett. 1989, 30, 4227. (c) Waldmann, H. Liebigs Ann. Chem. 1990, 671. (d) Waldmann, H.; Dragger, M. Liebigs Ann. Chem. 1990, 681.
 (7) Waldmann, H. Liebigs Ann. Chem. 1990, 1013.
 (8) Waldmann, H. Synlett 1990, 627; Liebigs Ann. Chem. 1991, 1317.
 (9) Review: Waldmann, H.; Braun, M. Gazz. Chim. Ital. 1991, 121, 277.

[^3]: (10) Grigg, R. J. Chem. Soc., Chem. Commun. 1982, 384.

[^4]: (13) Waldmann, H.; Braun, M.; Weymann, M.; Gewehr, M. Synlett

[^5]: (17) Davis, F. A. J. Org. Chem. 1984, 49, 3241.
 (18) (a) Reider, P. J.; Grabowski, E. J. J. Tetrahedron Lett. 1982, 23, 2298. (b) Lohmar, R.; Steglich, W. Angew. Chem. 1978, 90, 493; Angew. Chem., Int. Ed. Engl. 1978, 17, 493.
 (19) (a) Brown, J. D.; Foley, M.; Commins, D. J. Am. Chem. Soc. 1988, 110, 7445. (b) Comins, D.; LaMunyon, D. Tetrahedron Lett. 1989, 30, 5053. (c) Tubery, F.; Grierson, D. S.; Husson, H. P. Tetrahedron Lett. 1987, 28, 6457.

